MTH422 : Partial Differential Equations (2017_1)

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

July Examination 2017_1

 
Course Code: MTH422
Course Title: Partial Differential Equations
Credit Unit: 3
Time Allowed: 3 Hours
Total: 70 Marks
INSTRUCTION: ANSWER QUESTION ONE (1) AND ANY OTHER 4 QUESTIONS
 
(a) (i)   Show that if   is constant, then is a solution to  the wave equation                                                                                   5 marks
 
(ii) Show that  is a solution of the Laplace’s equation
5 marks
(b)    For  constant, find the separated solution to heat equation
12 marks
 
(a)  Find the solution of the equation                                                        8 marks
(b)  Solve the equation                                          4 marks
 
3.     (a)  Find the solution of the heat equation                                                        7 marks
(b)  Solve the boundary value problem                  5 marks
 
4.     (a)  Solve the heat conduction equation for  the boundary conditions and the initial condition       12 marks
 
5.    Solve the one-dimension wave equation  for  the initial conditions are                                                                 12 marks
 
6.    (a) Using the Lagrange method  solve
6 marks
(b) Find the separated solution to                                                              6 marks
You can get the soft copy for this course or the exam summary answers for this course from 08039407882

Check anoda sample below

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link