MTH412 Solutions

MTH412 Tma Solutions

1. if A is nonempty subset of a linear space, then the \(\hspace{1.0cm}\) of all convex sets containing A gives you the convex hull of A denoted by co A.

universal

complement

union

—>> intersection

2. Let \(\textbf{K} \cdot \textbf{K}_1\) and \(\textbf{K} \cdot \textbf{K}_2\) be two norms defined on a linear space X. \(\textbf{K} \cdot \textbf{K}_1\) and \(\textbf{K} \cdot \textbf{K}_2\) are equivalent if there exists constants \(a, b > 0\) such that \(\hspace{1.0cm}\) for all \(x \in X\).

\(a \textbf{K} \times \textbf{K}_1 \geq 0\)

\(a \textbf{K} \times \textbf{K}_1 \geq \textbf{K} \times \textbf{K}_2\)

\(a \textbf{K} \times \textbf{K}_1 \leq \textbf{K} \times \textbf{K}_2\)

—>> \(a \textbf{K} \times \textbf{K}_1 \leq \textbf{K} \times \textbf{K}_2 \leq b\textbf{K} \times \textbf{K}_1 \)

3. All norms defined on a finite dimensional space are \(\hspace{1.0cm}\).

functional

normed

—>> equivalent

linearised

4. If \(f : X \mapsto R\) be a linear functional defined on a linear space X, then f is a \(\hspace{1.0cm}\) function.

—>> convex

concave

divergent

convergent

5. If \(x^*\in R^n\) and if \(r>0\), then the \(\hspace{1.0cm}\) expressed as \(B(x^*, r) = \{y \in R^n: \textbf{K} y – x^* \textbf{K}<r\}\) centered at \(x^*\) of radius r is a convex set.

linear space

—>> ball

sphere

triangle

6. Any linear subspace M of \(R^n\) is a convex set since linear subspaces are \(\hspace{1.0cm}\) under addition and scalar multiplication.

normed

—>> closed

open

characterized

7. A nonempty subset C of the vector space X is convex if and only if C contains all \(\hspace{1.0cm}\) of all its elements.

—>> convex combinations

convex addition

convex multiplication

convex set

8. Let \(1 \leq p \leq + \infty\) . If for arbitrary \(x = \{x_k\}, y = \{y_k\} in \(l_p\) and \(\lambda \in K\), define vector addition and scalar multiplication componentwise then \(l_p\) is a \(\hspace{1.0cm}\) space.

nonlinear

—>> linear

real

complex

9. Let X be a linear space, and \(x, y \in X\). The [x, y] joining x and y is defined [x, y] = \(\{\lambda x + (1- \lambda)y: 0 \leq \lambda \leq 1\}\).

linear space

—>> line segment

subset

vector

10. The space of all bounded sequence of real(or complex) is called \(\hspace{1.0cm}\).

\(l_{1}\) -space

\(l_{0}\) -space

—>> \(l_{\infty}\) -space

\(l_{2}\) -space

JOIN OUR TELEGRAM ON VIP NOUN UPDATES – FOR FREE MTH412 PAST QUESTIONS AND EXAMS SUMMARIES

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link