If \(H\) and \(K\) are subgroups of a group \(G\) with \(K\) normal in \(G\), then
—>> \(H/(H\cap K)\)\cong (HK)/K\)
\(H/(H\cap K)\)\cong K/(HK)\)
\(H/(H\cap K)\)\cong H\cap K)/K\)
\(H/(H\cap K)\)\cong K/H\cap K\)
Tutors, Past Questions and Projects.
If \(H\) and \(K\) are subgroups of a group \(G\) with \(K\) normal in \(G\), then
—>> \(H/(H\cap K)\)\cong (HK)/K\)
\(H/(H\cap K)\)\cong K/(HK)\)
\(H/(H\cap K)\)\cong H\cap K)/K\)
\(H/(H\cap K)\)\cong K/H\cap K\)