\(\large A set of function \({f_0(x),f_1(x),…..,f_n(x),…})\) is said to be orthogonal wrt w(x) over the interval (a,b) if
—>> \(\large \( \int_{a}^{b}w(x)f_n(x)f_m(x)dx = \left\{ \begin{array}{ll} 1 & \mbox{if $m \neq n$};\\ 0 & \mbox{if $m=n$}.\end{array} \right. \)\)
\(\large \( \int_{a}^{b}w(x)f_n(x)f_m(x)dx = \left\{ \begin{array}{ll} 0 & \mbox{if $m \neq n$};\\ 1 & \mbox{if $m=n$}.\end{array} \right. \)\)
Both A and B
None of the above