MTH102 Solutions

MTH102 Tma Solutions

1. Given that \( y=x^{-m}\) what is \(\frac{dy}{dx}\)?

\(\frac{-m}{x^{(m-1)}}\)

\(\frac{-mx^{(m+1)}}{x^{m-1}} \)

—>> \(\frac{-m}{x^{(m+1)}}\)

\(\frac{-{mx^{m-1}}}{x^{(m+1)}}\)

2. Let \(f \) and \(g\) be defined by \(f:x\rightarrow {3x-1})\ and\(g:x\rightarrow {2-5x}\). Find\(fog{(2)}\)

\(-20\)

\{-23\}

\{25\}

—>> \{-25\}

3. The distance s in meters covered by a particle in \(t\) seconds is \(s=\frac{3}{2} t^2-3t\). Find its acceleration.

—>> \(3ms^{-2}\)

\(1ms^{-2}\)

\(4ms^{-2}\)

\(2ms^{-2}\)

4. What is the derivative of \(\sqrt {x}\)

\(\frac{-1}{2\sqrt {x}}\)

—>> \(\frac{1}{2\sqrt {x}}\)

\(\frac{1}{\sqrt {x}}\)

\(\frac{-1}{\sqrt {x}}\)

5. If \(y=x^3-x^2-x+6\), find the values of \( x\) at the turning points.

—>> 1 and \(frac{-1}{3}\)

\(\frac{1}{3}\)

\(-1\) and \(\frac{-1}{3}\)

\(1\) and \(\frac{1}{3}\)

6. Find the gradient of the curve with equation \(2x^2-4xy+3y^2 = 3\) at the point (2,1).

4

3

1

—>> 2

7. Evaluate the integral \(\int_{2}^{4} (x^{2}-1) dx\)

\(48-log_eâ¡ 2\)

\(-48+log_eâ¡ 2\)

\(-48-log_eâ¡ 2\)

—>> \(48+log_eâ¡ 2\)

8. Given that\(x=2cos{\theta }\)and\(y=2sin{\theta }\) evaluate \(x^2+y^2\)

1

—>> 2

4

8

9. Find \(\lim_{x\rightarrow 1} (2x-3)\)

—>> \(-1\)

1

\(0\)

2

10. Evaluate \(int _{4}^{9} \frac{dx}{\sqrt{x}}\)

7

—>> 2

1

14

JOIN OUR TELEGRAM ON VIP NOUN UPDATES – FOR FREE MTH102 PAST QUESTIONS AND EXAMS SUMMARIES

VIP NOUN UPDATES �

Giving latest noun updates.. project, seminar writeup, exam summary, TMA, free past questions. Ask questions and…

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link