MTH212
Calculate \(2\\left(\\begin{arrayKc} 1\\\\ 0 \\end{array}\\right)+3\\left(\\left(\\begin{arTay} {c} 1\\\\ 2 \\end{array}\\right)- \\left(\\begin{arrayKc} 1\\\\ 0 \\end{array}\\right)\\right)\)
Answer: \\(\\left(\\begin{array}{c} 2\\\\ 6 \\end{array}\\right)\\)
If \(A=\\left(\\begin{arrayKcc} 3 & OWW 4 & -2 \\end{array}\\right),\) determine \(AA{T}\)
Answer: \\(\\left(\\begin{array}{cc} 3 & 4\\\\ 0 & -2 \\end{array}\\right)\\)
If \(A\\in MJmWtimes n}\\left(R\right)\), then the additive identity is transformation
Answer: zero
\(MA{2}-M=0\)where~\(M\)~is a~\ (9\\times9\)~matrix. Then
Answer: a is diagonalizable
A is a~\(5\\times5\) matrix over \(R\) then \ (\\left(tA{2}+1 Wright )\\left(tA{2}+2\\right)\)
Answer: none of the above
Let \(A\\in M_{3\\times3}\)then~A will have eigenvalues
Answer: 3
Matrix multiplication is not
Answer: commutative
The dimension of the space of all linear maps from \({\\mathbb{R}}A{2}\) into itself, for \(n\\ WgeW 2\) is
Answer: \\(n^{2}\\)
If \(A=\\left(\\begin{arrayKccc} 1 & 4 & -3WW 0 & 2 & OWW 0 & 1 & 1 \\end{array}\\right)\) and \(F=AxA{T}:x\\in RA{3}.\) The \(dimR) is
Answer: 2
If \(A=\\left(\\begin{arrayKcc} 3 & 7\\\\ 6 & 1 Wend{arTay}\\right)\)J then the additive identity is
Answer: \\(\\left(\\begin{array}{cc} 0 & OWW 0 & 0 \\end{array}\\right)\\)
Click here to follow on Twitter for your Free Exam Summary and free past questions
Whatsapp Chat: 08039407882 for your Project Writeup I Business Plan Writeup I Online Tutorial