MTH212 Past Questions

MTH212

Calculate \(2\\left(\\begin{arrayKc} 1\\\\ 0 \\end{array}\\right)+3\\left(\\left(\\begin{arTay} {c} 1\\\\ 2 \\end{array}\\right)- \\left(\\begin{arrayKc} 1\\\\ 0 \\end{array}\\right)\\right)\)
Answer: \\(\\left(\\begin{array}{c} 2\\\\ 6 \\end{array}\\right)\\)

If \(A=\\left(\\begin{arrayKcc} 3 & OWW 4 & -2 \\end{array}\\right),\) determine \(AA{T}\)
Answer: \\(\\left(\\begin{array}{cc} 3 & 4\\\\ 0 & -2 \\end{array}\\right)\\)

If \(A\\in MJmWtimes n}\\left(R\right)\), then the additive identity is transformation
Answer: zero

\(MA{2}-M=0\)where~\(M\)~is a~\ (9\\times9\)~matrix. Then
Answer: a is diagonalizable

A is a~\(5\\times5\) matrix over \(R\) then \ (\\left(tA{2}+1 Wright )\\left(tA{2}+2\\right)\)
Answer: none of the above

Let \(A\\in M_{3\\times3}\)then~A will have eigenvalues
Answer: 3

Matrix multiplication is not
Answer: commutative

The dimension of the space of all linear maps from \({\\mathbb{R}}A{2}\) into itself, for \(n\\ WgeW 2\) is
Answer: \\(n^{2}\\)

If \(A=\\left(\\begin{arrayKccc} 1 & 4 & -3WW 0 & 2 & OWW 0 & 1 & 1 \\end{array}\\right)\) and \(F=AxA{T}:x\\in RA{3}.\) The \(dimR) is
Answer: 2

If \(A=\\left(\\begin{arrayKcc} 3 & 7\\\\ 6 & 1 Wend{arTay}\\right)\)J then the additive identity is
Answer: \\(\\left(\\begin{array}{cc} 0 & OWW 0 & 0 \\end{array}\\right)\\)

Click here to follow on Twitter for your Free Exam Summary and free past questions

Whatsapp Chat: 08039407882 for your Project Writeup I Business Plan Writeup I Online Tutorial

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link