MTH281 TMA

Let \[f(x)=x^{4}-2x^{2}\]. Find the all \[c\] (where \[c\] is the interception on the x-axis ) in the interval (-2, 2) such that \[f'(x)=0\]. (Hint use Rolle’s theorem )….
 
Compute the first thrre derivatives of \[f(x)=2x^{5}+x^{\frac{3}{2}}-\frac{1}{2x}\]…
 
Given \f(x)=3x(x-1)^{5}. Compute \[f”'(x)\]….
 
Determine whether the Rolle’s theorem can be applied to \[f\] on the closed interval [a,b] . If can be applied, Find the values of \[c\] in open interval (a, b) such that \[f'( c) = 0\], \[f(x)=\frac{x^{2}-2x-3}{x+2}, [-1, 3]….
 
Evaluate the \[\frac{d ^{3}f}{d x^{3}}\] of \[f(x)= sin (x) cos (x)\]…
 
Given\[f(x)=\sqrt(9-x^{2})\]….
 
Find the two x-intercept of \[f(x)=x^{2}-3x+2\]….
 
For \[g(x)=\frac{x-4}{x-3}\] we can use the mean value theorem on [4, 6], Hence determine \[c\]…
 
Determine whether the mean value theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the value of \[c\] in open interval (a, b) such that \[f(x)=x(x^{2}-x-2), [-1, 1]\]….
 
Find the number \[c\] guaranteed by the mean value theorem for derivatives for \[f(x)=(x+1)^{3}, [-1, 1] \]….
 
Find the number \[c\] guaranteed by the mean value theorem for derivatives for \[f(x)=(x+1)^{3}, [-1, 1] \]
 
Let \[f(x)=x^{4}-2x^{2}\]. Find the all \[c\] (where \[c\] is the interception on the x-axis ) in the interval (-2, 2) such that \[f'(x)=0\]. ( Hint use Rolle’s theorem )….
 
Determine whether the mean value theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the value of \[c\] in open interval (a, b) such that \[f(x)=x(x^{2}-x-2), [-1, 1]\]…
 
Given\[f(x)=\sqrt(9-x^{2})\]…
 
Given \f(x)=3x(x-1)^{5}. Compute \[f”'(x)\]…
 
For \[g(x)=\frac{x-4}{x-3}\] we can use the mean value theorem on [4, 6], Hence determine \[c\]…
 
Determine whether the Rolle’s theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the values of \[c\] in open interval (a, b) such that \[f'( c) = 0\], \[f(x)=\frac{x^{2}-2x-3}{x+2}, [-1, 3]…
 
Compute the first thrre derivatives of \[f(x)=2x^{5}+x^{\frac{3}{2}}-\frac{1}{2x}\]…
 
Evaluate the \[\frac{d ^{3}f}{d x^{3}}\] of \[f(x)= sin (x) cos (x)\]…
 
Find the two x-intercept of \[f(x)=x^{2}-3x+2\]…
 
…………………………………………
Q1 Expand the function \[f(x)=e^{3x}\] about x=0 using Maclaurin’s series
\[e^{3x}=1+3x+\frac{(3x)^{2}}{2!}+\frac{(3x)^{3}}{3!}+\cdots+\frac{(3x)^{n}}{n!}\]
\[e^{3x}=1-3x-\frac{(3x)^{2}}{2!}-\frac{(3x)^{3}}{3!}-\cdots-\frac{(3x)^{n}}{n!}\]
\[e^{3x}=1+x+\frac{(x)^{2}}{2!}+\frac{(x)^{3}}{3!}+\cdots+\frac{(x)^{n}}{n!}\]
\[e^{3x}=1-x-\frac{(x)^{2}}{2!}-\frac{(x)^{3}}{3!}-\cdots-\frac{(x)^{n}}{n!}\]
Q2 Given\[ f(x)=3x(x-1)^{5}\]. Compute \[f”'(x)\]
\[f”'(x)=8(2x-1)^{3}(x-1)\]
\[f”'(x)=80(2x-1)^{2}(x-1)\]
\[f”'(x)=100(x-1)^{2}(4x-1)\]
\[f”'(x)=180(x-1)^{2}(2x-1)\]
Q3 Evaluate the \[\frac{d ^{3}f}{d x^{3}}\] of \[f(x)= sin (x) cos (x)\]
\[\frac{d ^{3}f}{d x^{3}}=-4\left(cos^{2} (x)-sin^{2} (x)\right)\]
\[\frac{d ^{3}f}{d x^{3}}=-2\left(Cos^{2} (x)+sin^{2} (x)\right)\]
\[\frac{d ^{3}f}{d x^{3}}=-4\left(tan^{2} (x)-cos^{2} (x)\right)\]
\[f'(x)=5x^{4}-\frac{1}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 20x^{3}-\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{x^{1}}, 100x^{2}-\frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\]
Q4 Compute the first thrre derivatives of \[f(x)=2x^{5}+x^{\frac{3}{2}}-\frac{1}{2x}\]
\[f'(x)=10x^{3}-\frac{2}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 20x^{3}-\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{x^{3}}, 10x^{2}-\frac{1}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\]
\[f'(x)=10x^{4}-\frac{3}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 40x^{3}-\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{x^{3}}, 120x^{2}-\frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\]
\[f'(x)=10x^{4}-\frac{3}{2}x^{\frac{2}{2}}-\frac{1}{2x^{2}}, 40x^{3}\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{x^{3}}, 120x^{2}-\frac{3}{8}x^{-\frac{1}{2}}+ \frac{3}{x^{4}}\]
\[f'(x)=5x^{4}-\frac{1}{2}x^{\frac{1}{2}}+ \frac{1}{2x^{2}}, 20x^{3}-\frac{3}{4}x^{-\frac{1}{2}}- \frac{1}{x^{1}}, 100x^{2}-\frac{3}{8}x^{-\frac{3}{2}}+ \frac{3}{x^{4}}\]
Q5 For \[g(x)=\frac{x-4}{x-3}\], we can use the mean value theorem on [4, 6], Hence determine \[c\]
\[c=3\pm \sqrt(3)\]
\[\sqrt (112) \]
\[c=2\pm \sqrt(3)\]
\[c=-2\pm \sqrt(5)\]
Q6 Find the number \[c\] guaranteed by the mean value theorem for derivatives for \[f(x)=(x+1)^{3}, [-1, 1] \]
\[c=\frac{-\sqrt (3) \pm 2}{\sqrt(3)}\]
\[c=\frac{-\sqrt (2) \pm 1}{\sqrt(3)}\]
\[c=1\pm \sqrt(5)\]
\[c=\frac{-\sqrt (5) \pm 2}{\sqrt(5)}\]
Q7 Determine whether the Rolle’s theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the values of \[c\] in open interval (a, b) such that \[f'( c) = 0\], \[f(x)=\frac{x^{2}-2x-3}{x+2}, [-1, 3]\]
\[c=-2\pm\sqrt(5)\]
\[c=-1\pm\sqrt(5)\]
\[c=-2\pm 2\sqrt(5)\]
\[c=-2\pm\sqrt(5)\]
Q8 Determine whether the mean value theorem can be applied to \[f\] on the closed interval [a, b] . If can be applied, Find the value of \[c\] in open interval (a, b) such that \[f(x)=x(x^{2}-x-2), [-1, 1]\]
\[c=\frac{-1}{2}\]
\[c=\frac{-1}{3}\]
\[c=\frac{-2}{3}\]
\[c=\frac{-2}{5}\]
Q9 Find the two x-intercept of \[f(x)=x^{2}-3x+2\]
x=1, 3
x=1, 1
x=-2, 2
x= 1, 2
Q10 Let \[f(x)=x^{4}-2x^{2}\]. Find the all \[c\] (where \[c\] is the interception on the x-axis ) in the interval (-2, 2) such that \[f'(x)=0\]. ( Hint use Rolle’s theorem )
(-1, 0, 1)
(-1, 1, 1)
(-1, 2, 1)
(-1, 0, 2)
 
 
 
Q1 Find the total differential of the function \[f(x,y)=x^{2}+3xy\] wth respect to x, given that \[y=sin^{-1} x\].
\[2x+2sin^{-1} x+\frac{x}{(2-2x^{2}}^{\frac{1}{2}}\]
\[2x+3sin^{-1} x+\frac{3x}{(1-x^{2}}^{\frac{1}{2}}\]
\[x+sin^{-1} x+\frac{2x}{(1-x^{2}}^{\frac{1}{2}}\]
\[2x+sin^{-1} x+\frac{3x}{(1-x^{3}}^{\frac{1}{2}}\]
Q2 Find the total differential of the function \[f(x,y)=y e^{x+y}\]
\[d f=[y e^{x+y}]dx+[(1+y)e^{x+y}]dy\]
\[d f=[y e^{x+y}]dx-[(1+y)e^{x+y}]dy\]
\[d f=[y e^{x-y}]dx+[(1+y)e^{x-y}]dy\]
\[d f=[y e^{x-y}]dx-[(1+y)e^{x-y}]dy\]
Q3 Evaluate the second partial derivative of the functon \[f(x,y)=2x^{3}y^{2}+y^{3}\]
\[\frac{\partial^{2}f}{\partial x^{2}}=12xy, \frac{\partial^{2} f}{\partial y^{2}}=x^{3}+y, \frac{\partial^{2} f}{\partial x\partial y}=2x^{2}y \]
\[\frac{\partial^{2}f}{\partial x^{2}}=12x^{2}y^{2}, \frac{\partial^{2} f}{\partial y^{2}}=4x+6y, \frac{\partial^{2} f}{\partial x\partial y}=10x^{2}y \]
\[\frac{\partial^{2}f}{\partial x^{2}}=12xy^{2}, \frac{\partial^{2} f}{\partial y^{2}}=4x^{3}+6y, \frac{\partial^{2} f}{\partial x\partial y}=12x^{2}y \]
\[\frac{\partial^{2}f}{\partial x^{2}}=5x^{3}y^{2}, \frac{\partial^{2} f}{\partial y^{2}}=6x^{3}+6y, \frac{\partial^{2} f}{\partial x\partial y}=2x^{2}y^{2} \]
Q4 Find the first partial derivative of the functon \[f(x,y)=2x^{3}y^{2}+y^{3}\]
\[\frac{\partial f}{\partial x}=6x^{2}y^{2}, \frac{\partial f}{\partial y}=4x^{3}y+y^{2}\]
\[\frac{\partial f}{\partial x}=6x^{3}y^{3}, \frac{\partial f}{\partial y}=4x^{4}y+y^{2}\]
\[\frac{\partial f}{\partial x}=x^{2}y, \frac{\partial f}{\partial y}=2x^{3}y+y\]
\[\frac{\partial f}{\partial x}=x^{2}y^{2}, \frac{\partial f}{\partial y}=x^{3}y+y^{2}\]
Q5 Evaluate the stationary points of the function \[f(x,y)=xy\left(x^{2}+y^{2}-1\right)\]
\[c=3\pm \sqrt(3) \]
\[(0,0), (0,0), (0, 0), \pm \left(0, \frac{1}{2}\right), \pm \left(0, -\frac{1}{2}\right)\]
\[(0,0), (0,0), (\pm 1, 0), \pm \left(\frac{1}{2}, \frac{1}{2}\right), \pm \left(\frac{1}{2}, 0\right)\]
\[(0,0), (0,\pm 1), (\pm 1, 0), \pm \left(\frac{1}{2}, \frac{1}{2}\right), \pm \left(\frac{1}{2}, -\frac{1}{2}\right)\]
Q6 Use Leibnitz theorem to evaluate the fourth derivative of \[\left(2x^{3}+3x^{2}+x+2\right)e^{2x}\]
\[16\left(2x^{3}+15x^{2}+31x+19\right)e^{2x}\]
\[8\left(x^{2}+5x^{2}+3x+14\right)e^{2x}\]
\[10\left(3x^{2}+10x^{2}+3x+15\right)e^{2x}\]
\[16\left(3x^{2}+5x^{2}+2x+3\right)e^{2x}\]
Q7 Compute the third derivative of \[\sin x In x\] using Leibnitz theorem
\[(2x^{-2}-3x^{-2})\cos x-(3x^{-3}+In 2x) \sin x\]
\[(x^{-3}-x^{-2})\cos x-(x^{-2}+In x) \cos x\]
\[(2x^{-3}-3x^{-1})\sin x-(3x^{-2}+In x) \cos x\]
\[(3x^{-3}-4x^{-1})\sin x-(3x^{-2}+In x) \sin x\]
Q8 Use Leibnitz theorem to find the second derivative of \[\cos x \sin 2x\]
\[2 \sin x (2-9\cos^{2} x)\]
\[2 \sin x (1-5\cos^{3} x)\]
\[3 \sin x (2-9\sin^{2} x)\]
\[2 \cos x (3-5\cos^{2} x)\]
Q9 Compute the n-th differential coefficient of \[y=x\log_{e}x\]
\[(-1)^{n-2}\frac{(n+2)!}{x^{n+1}}\left(n^{3}+2\right)\]
\[(-1)^{n-2}\frac{(n-2)!}{x^{n-1}}\left(n^{3}-2\right)\]
\[(-1)^{n-1}\frac{(n-1)!}{x^{n-2}}\left(n^{2}-2\right)\]
\[(-1)^{n+1}\frac{(n+1)!}{x^{n+2}}\left(n^{2}+2\right)\]
Q10 Obtain the n-th differential coefficient of \[y=(x^{2}+1)e^{2x}\]
\[2^{n-3}e^{4x}(x^{2x}+nx+n^{3}-n+4)\]
\[2^{n-2}e^{2x}(4x^{3x}+5nx+n^{3}-n+4)\]
\[2^{n-2}e^{2x}(4x^{2x}+4nx+n^{2}-n+4)\]
\[2^{n}e^{x}(4x^{2x}+4nx-n+4)\]
 
Q1 If a and b are non-collinear vectors and \[A=(x+y)a+(2x+y+1)b\]
x=1,y=1
x=2,y=4
x=2,y=1
x=4,y2
Q2 The following forces act on a particle P:\[F_{1}=2i+3j-5k\], \[F_{2}=-5i+j+3k\],\[F_{3}=i-2j+4k\],\[F_{4}=4i-3j-2k\], Find the magnitude of the resultant
\[2i-j\]
\[2i-j+k\]
\[2i-j-2k\]
\[i-j-k\]
Q3 Given the scalar defined by \[\phi(x,y,z)=3x^{2}z-xy^{2}+5\],find \[\phi\] at the points (-1,-2,-3)
12
5
19
19
Q4 Find a unit vector parallel to the resultant vector \[A_{1}=2i+4j-5k\],\[A_{2}=1+2j+3k\]
\[\frac{3}{7}i+\frac{6}{7}j-\frac{2}{7}k\]
\[\frac{1}{7}i+\frac{63}{7}j-\frac{4}{7}\]
\[\frac{2}{7}i-\frac{3}{7}j-\frac{5}{7}\]
\[\frac{3}{5}i+\frac{6}{5}j-\frac{2}{5}\]
Q5 If \[A_{1}=3i-j-4k\], \[A_{2}=-2i+4j-3k\],\[A_{3}=i+2j-k\], find \[\left|3A_{1}-2A_{3}+4A_{3}\right|\]
\[\sqrt (398)\]
\[\sqrt (112) \]
\[\sqrt (214)\]
\[\sqrt (81)\]
Q6 A car travels 3km due north, then 5km northeast. Determine the resultant displacement
7.43
5.61
9.51
4.53
Q7 Let a and b be vectors, then \[a \times b= ab\sin \theta\] is the ………product
product
scalar
vector
none of the above
Q8 Given that \[A_{1}=2i-j+k\],\[A_{2}=i+3j-2k\],\[A_{3}=3i+2j+5k\] and \[A_{4}=3i+2j+5k\],Find scalars a, b, c such that \[A_{4}=a A_{1} +b A_{2}+c A_{3}\]
a=1,b=-1,c=1
a=-2,b=1,c=-3
a=2,b=3,c=-1
a=-2,b=-1,c=2
Q9 Given that \[A_{1}=3i-2j+k\],\[A_{2}=2i-4j-3k\],\[A_{3}=-i+2j+2k\], find the magnitudes of \[2A_{1}-3 A_{2}-5 A_{3}\]
5
\[\sqrt 5\]
\[\sqrt 30\]
\[\sqrt 15\]
Q10 Find the magnitude of vector \[A=3i-2j+2k\]
3
2
1
5
Q1 If a and b are non-collinear vectors and \[A=(x+y)a+(2x+y+1)b\]
x=1,y=1
x=2,y=4
x=2,y=1
x=4,y2
Q2 The following forces act on a particle P:\[F_{1}=2i+3j-5k\], \[F_{2}=-5i+j+3k\],\[F_{3}=i-2j+4k\],\[F_{4}=4i-3j-2k\], Find the magnitude of the resultant
\[2i-j\]
\[2i-j+k\]
\[2i-j-2k\]
\[i-j-k\]
Q3 Given the scalar defined by \[\phi(x,y,z)=3x^{2}z-xy^{2}+5\],find \[\phi\] at the points (-1,-2,-3)
12
5
19
19
Q4 Find a unit vector parallel to the resultant vector \[A_{1}=2i+4j-5k\],\[A_{2}=1+2j+3k\]
\[\frac{3}{7}i+\frac{6}{7}j-\frac{2}{7}k\]
\[\frac{1}{7}i+\frac{63}{7}j-\frac{4}{7}\]
\[\frac{2}{7}i-\frac{3}{7}j-\frac{5}{7}\]
\[\frac{3}{5}i+\frac{6}{5}j-\frac{2}{5}\]
Q5 If \[A_{1}=3i-j-4k\], \[A_{2}=-2i+4j-3k\],\[A_{3}=i+2j-k\], find \[\left|3A_{1}-2A_{3}+4A_{3}\right|\]
\[\sqrt (398)\]
\[\sqrt (112) \]
\[\sqrt (214)\]
\[\sqrt (81)\]
Q6 A car travels 3km due north, then 5km northeast. Determine the resultant displacement
7.43
5.61
9.51
4.53
Q7 Let a and b be vectors, then \[a \times b= ab\sin \theta\] is the __________
product
scalar
vector
none of the above
Q8 Given that \[A_{1}=2i-j+k\],\[A_{2}=i+3j-2k\],\[A_{3}=3i+2j+5k\] and \[A_{4}=3i+2j+5k\],Find scalars a, b, c such that \[A_{4}=a A_{1} +b A_{2}+c A_{3}\]
a=1,b=-1,c=1
a=-2,b=1,c=-3
a=2,b=3,c=-1
a=-2,b=-1,c=2
Q9 Given that \[A_{1}=3i-2j+k\],\[A_{2}=2i-4j-3k\],\[A_{3}=-i+2j+2k\], find the magnitudes of \[2A_{1}-3 A_{2}-5 A_{3}\]
5
\[\sqrt 5\]
\[\sqrt 30\]
\[\sqrt 15\]
Q10 Find the magnitude of vector \[A=3i-2j+2k\]
3
2
1
5
Q11 If a and b are non-collinear vectors and \[A=(x+y)a+(2x+y+1)b\]
x=1,y=1
x=2,y=4
x=2,y=1
x=4,y2
Q12 The following forces act on a particle P:\[F_{1}=2i+3j-5k\], \[F_{2}=-5i+j+3k\],\[F_{3}=i-2j+4k\],\[F_{4}=4i-3j-2k\], Find the magnitude of the resultant
\[2i-j\]
\[2i-j+k\]
\[2i-j-2k\]
\[i-j-k\]
Q13 Given the scalar defined by \[\phi(x,y,z)=3x^{2}z-xy^{2}+5\],find \[\phi\] at the points (-1,-2,-3)
12
5
19
19
Q14 Find a unit vector parallel to the resultant vector \[A_{1}=2i+4j-5k\],\[A_{2}=1+2j+3k\]
\[\frac{3}{7}i+\frac{6}{7}j-\frac{2}{7}k\]
\[\frac{1}{7}i+\frac{63}{7}j-\frac{4}{7}\]
\[\frac{2}{7}i-\frac{3}{7}j-\frac{5}{7}\]
\[\frac{3}{5}i+\frac{6}{5}j-\frac{2}{5}\]
Q15 If \[A_{1}=3i-j-4k\], \[A_{2}=-2i+4j-3k\],\[A_{3}=i+2j-k\], find \[\left|3A_{1}-2A_{3}+4A_{3}\right|\]
\[\sqrt (398)\]
\[\sqrt (112) \]
\[\sqrt (214)\]
\[\sqrt (81)\]
Q16 A car travels 3km due north, then 5km northeast. Determine the resultant displacement
7.43
5.61
9.51
4.53
Q17 Let a and b be vectors, then \[a \times b= ab\sin \theta\] is the ………product
product
scalar
vector
none of the above
Q18 Given that \[A_{1}=2i-j+k\],\[A_{2}=i+3j-2k\],\[A_{3}=3i+2j+5k\] and \[A_{4}=3i+2j+5k\],Find scalars a, b, c such that \[A_{4}=a A_{1} +b A_{2}+c A_{3}\]
a=1,b=-1,c=1
a=-2,b=1,c=-3
a=2,b=3,c=-1
a=-2,b=-1,c=2
Q19 Given that \[A_{1}=3i-2j+k\],\[A_{2}=2i-4j-3k\],\[A_{3}=-i+2j+2k\], find the magnitudes of \[2A_{1}-3 A_{2}-5 A_{3}\]
5
\[\sqrt 5\]
\[\sqrt 30\]
\[\sqrt 15\]
Q20 Find the magnitude of vector \[A=3i-2j+2k\]
3
2
1
5
Whatsapp 08039407882
YOU CAN NOW GET YOUR EXAM SUMMARY FOR ALL YOU E-EXAMS FROM US.
What is exam summary? Click here to learn more.

5 thoughts on “MTH281 TMA

  1. please can i get the answer for mth 281 and mth 213 tma 2

Leave a Reply to MorganCancel reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link
%d bloggers like this: