MTH303 : VECTORS AND TENSORS (2017)

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

                                                                      JULY EXAMINATION 2017_1
 
Course Code:              MTH303
Course Title:              VECTORS AND TENSORS
Credit Unit:               3
Time Allowed:           3 HOURS
Total Marks:              70%
Instruction:                 ATTEMPT QUESTIONS NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS
 
 
1.       (a) Given a vector  and
Find (i)           and       (ii)            x   at the point (1,-1,1)                                    (6 Marks)
(b)   Find the directional derivatives of  at the point (1,1,-1) in the direction toward the point (-3,5,6).                                                                                                                           (6 Marks)
(c)    Find the values of the constants a, b, c so that the directional derivative of   at (1,2,-1) has a maximum of magnitude 64 in a direction parallel to the z-axis.                                                                                                                                         (5 Marks)
(d)    Evaluate divergence of  at the point (1,1,1)                .                               (5 Marks)
 
2.       (a) Determine the constant b such that is solenoidal.                                                                                                                                                     (4 Marks)
(b) If f and g are solutions of the Laplace equation show that        (4 Marks)
(c)    Find the curl of  at the point (1,2,3)                                                           (4 Marks)
 
3.       (a) Given that  , find a scalar function f(x, y, z) such
that .                                                                                                                                            (3 Marks)
(b)   Find the work done in moving a particle in the force field  along
(i)      Straight line from (0,0,0) to B(2,1,3)                                                                                         (3 Marks)
(ii)    Space curve  y=t,   from  t=0 to t =1                                          (3 Marks)
(iii)   Curve c: defined by ,  from x=0, x = 2.                                                               (3 Marks)
4.       (a) If  evaluate  around the curve c consisting of
and                                                                                                                              (4 Marks)
(b)   Evaluate (i) x F) . ndS    and                                                                                                      (4 Marks)
(ii)   if       and S is the surface of the plane   bounded by the coordinate planes x=0, y=0  and z=0  (4 Marks)
 
 
5.       (a) Find the surface area of the plane  cut of by x =0, y=0 and
(4 Marks)
(b)   (i) If V is the region in the first octant bounded by   and the plane x = 2  and  . Evaluate                                            (4 Marks)
(ii) Find the volume enclosed between two surfaces   and
(4 Marks)
 
 
6.       (a) Using Green’s theorem, find the area of the region in the first quadrant bounded by the
curves y = x, y = 1/x, y = x/4                                                                                        (4 Marks)
 
(b) (i) Show that is a vector perpendicular to the surface where c is a constant
(4 Marks)
(ii) Find a unit normal to the surface  at the point (2,-2,3)          (4 Marks)
 
You can get the exam summary answers for this course from 08039407882

Check anoda sample below

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link