MTH341 Solutions

MTH341

The \(n\)th derivative \(f^{(n)} of the function \(f: \mathbb{R}\rightarrow \mathbb{R}\) defined by \(f(x)=|x|\) for all \(x\in\mathbb{R}\) is

\(f'(x)=\left\{\begin{array}{rcl}-x&\mbox{if}&x> 0\\x&\mbox{if}&x<0\end{array}\right}\).

\(f'(x)=\left\{\begin{array}{rcl}-1&\mbox{if}&x> 0\\1&\mbox{if}&x<0\end{array}\right}\).

\(f'(x)=\left\{\begin{array}{rcl}x&\mbox{if}&x> 0\\-1&\mbox{if}&x<0\end{array}\right}\).

\(f ‘(x)=\left\{\begin{array}{rcl}1&\mbox{if}&x> 0\\-1&\mbox{if}&x<0\end{array}\right}\).

A real function \(f\) defined on an interval \([a,b]\) with \(a<c<b\) where \(c\) is a point of the interval, is said to be differentiable at the point \(x=c\) if

\(\(f'(c)=lim_{x}\frac{f(x)-f(b)}{x-c}\) exist and is infinite

\(\(f'(c)=lim_{x\rightarrow c}\frac{f(x)-f(c)}{x-c}\) exist and is finite

\(\(f'(c)=lim_{x\rightarrow c}\frac{f(c)-f(b)}{a-b}\) exist

\(\(f'(c)=lim_{x\rightarrow c}\frac{f(a)-f(c)}{b-c}\) exist and is finite

Evaluate \(lim_{x\rightarrow 0}\frac{\sqrt{2}-2Cos(\frac{\pi}{4}+x)}{x}\)

\(\sqrt{2}\)

\(2\)

\(2Cos x\)

\(2Cos(\frac{\pi}{4})\)

Let \(\phi(x)=\left\|\begin{array}{rcl}f(x)&g(x)&h(x)\\-f(a)&g(a)&h(a)\\f(b)&g(b)&h(b)\end{array}\right|\), \(g(x)=x\) and \(h(x)\) for all \(x\in[a,b]\), to deduce the Lagrange’s mean value theorem from the Generalized mean value theorem we must obtain the determinant

\(\left\|\begin{array}{rcl}1&g'(x)&0\\f(a)&a&1\\f(b)&a&1\end{array}\right|=0\)

\(\left\|\begin{array}{rcl}f'(x)&g'(x)&0\\f(a)&a&1\\f(b)&b&1\end{array}\right|=0\)

\(\left\|\begin{array}{rcl}f'(x)&g'(x)&0\\f(a)&g(a)&1\\f(b)&g(b)&1\end{array}\right|=0\)

\(\left\|\begin{array}{rcl}f'(x)&1&0\\f(a)&a&1\\f(b)&b&1\end{array}\right|=0\)

Applying Cauchy’s mean value theorem to the function \(f\) and \(g\) defined as \(f(x)=x^2\) and \(g(x)=x\) for all \(x\in[a,b]\), gives

\(c=\frac{1}{2}(a+b)\)

\(c=a^2+b\)

\(c=a+b\)

\(c=\frac{a}{2}+b\)

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link