The discrete metric is defined as \(d_0:E\times E\rightarrow \mathbb{R}\) such that

The discrete metric is defined as \(d_0:E\times E\rightarrow \mathbb{R}\) such that

\(d_0(x,y)=\left{\begin{array}{rcl} 1,&\mbox{if}&x\neq y\\-1,&\mbox{if}&x=y\end{array}\right\)

—>> \(d_0(x,y)=\left{\begin{array}{rcl}1,&\mbox{if}&x\neq y\\0,&\mbox{if}&x=y\end{array}\right\)

\(d_0(x,y)=\left{\begin{array}{rcl}0,&\mbox{if}&x\neq y\\-1,&\mbox{if}&x=y\end{array}\right\)

\(d_0(x,y)=\left{\begin{array}{rcl}1,&\mbox{if}&x\geq y\\-1,&\mbox{if}&x\leq y\end{array}\right\)

Leave a Reply

MEET OVER 2000 NOUN STUDENTS HERE. 

Join us for latest NOUN UPDATES and Free TMA answers posted by students on our Telegram. 

OUR ONLINE TUTORIAL CLASS IS NOW ON!!! JOIN US NOW. 
JOIN NOW!
close-link