eExam Question Bank

Coursecode:

Choose Coursecode
血Delete Selected Questions

```
    #Assign Selected Questions to eExam
```

Show 150 ventries

Search:

\square	$\begin{aligned} & \text { Question } \\ & \text { Type } \end{aligned}$	Question $\quad \downarrow \uparrow$	A $\downarrow \uparrow$	B $\quad \downarrow \uparrow$	C $\quad \downarrow \uparrow$	D $\quad \downarrow \uparrow$	Answer $\downarrow \uparrow$	Remark $\downarrow \uparrow$
\square	FBQ	The NOT gate, OR gate and AND gate are three main types of	logic gates	logic gate				eExam
\square	FBQ	A	minterm					eExam
		is a product term that contains all the variables used in a function						
\square	FBQ		Digital Logic					eExam
		is concerned with the interconnection of digital components and modules						
\square	FBQ	By looking at	truth tables					eExam
		one is able to know the output of any possible combination						
\square	FBQ		truth tables					eExam
		__are set to list the possible inputs and find their corresponding inputs						
\square	FBQ	Boolean	constants					eExam
		and variable are allowed to have only two possible values						
\square	FBQ	Boolean	theorem					eExam
		are rules that can help us simpilfy logic expressions						

| | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square								
\square	MCQ	Truth tables for the three basic logical operators are \qquad OR and NOT	ANB	AND	ANM	ANW	B	eExam
\square	MCQ	We write inputs values in the normal binary order	serial	system	counting	ascending	C	eExam
\square	MCQ	When dealing with dealing with binary values, each input can be either	a 1 and a 0	a 1 or a 1	0 or a 0	a 0 or a 1	D	eExam
\square	MCQ	The NOT operator is also know as the \qquad	octal	truth	inverter	boolean	C	eExam
\square	MCQ	The NOT gate, OR gate and AND gate are three main types of \qquad	computer	digital gate	logic gates	All gates	C	eExam
\square	MCQ	The \qquad principle states that if a boolean expression is 'True', then, its dual is 'True'	system	duality	duolity	truth	B	eExam
\square	MCQ	When counting in octal, the number after 7 is \qquad	0 to 7	8	9	10	D	eExam
\square	MCQ	Since octal is base-8 and hexadecimal is base \qquad	14	16	18	12	B	eExam
\square	MCQ	The use of \qquad is quite familiar to us	binary	digit	decimal	a bit	C	eExam
\square	MCQ	To build \qquad devices that can process these values accurately is next to impossible	world	analog	digital	system	B	eExam
\square	MCQ	\qquad circuits deal with binary values	binary	truth table	Boolean	inputs	A	eExam
\square	MCQ	A combinational circuit can be described precisely by	operations	truth table	function	symbols	B	eExam
\square	MCQ	\qquad circuits whose outputs are dependent on not only the current input	gate	combinational	boolean	sequential	D	eExam
\square	MCQ	\qquad circuit are dependent only on the current inputs	electric	combinational	system	gate	B	eExam
\square	MCQ	We use special logic \qquad ---- to denote the gates	signs	arrows	symbols	directions	C	eExam
\square	MCQ	In drawing digital circuit diagrams are also called --- \qquad	symbols	inverter	schematics	gate	C	eExam

| \square | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| \square | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\square								
\square	MCQ	what will be the output of a 3-input AND gate (X, Y, Z), if $X=0, Y=1, Z=1$?	10	0	1	101	B	eExam
\square	MCQ	The decimal value for the binary number 1011011 is	91	97	192	45	A	eExam
\square	MCQ	Which of these theorem is useful in converting maxterm-to-miniterm and miniterm-to-maxterm Boolean expression	Karnaugh Map Theorem	De Morgan's Theorem	Boolean Theorem	None of the option	B	eExam
\square	MCQ	Covert 101111010100 base 2 to base 8	5723	5744	524	5724	D	eExam
\square	MCQ	Which of these is a circuit simulator used to accurately convert Boolean expression to Truth table or otherwise	Digital Converter	Electronic Workbench	Mathlab	Logical Converter	B	eExam
\square	MCQ	Covert the octal number 5724 to base 2	$\begin{aligned} & 101111010 \\ & 101 \end{aligned}$	$\begin{aligned} & 101111010 \\ & 100 \end{aligned}$	$\begin{aligned} & 101101 \\ & 010100 \end{aligned}$	$\begin{aligned} & 101111 \\ & 010110 \end{aligned}$	B	eExam
\square	MCQ	Which logic gate complements the input?	AND	OR	NAND	NOT	D	eExam
\square	MCQ	Whenever the J-K flip-flop is wired for use only in the toggle mode, then the flipflop is commonly called	Clocked JK flip-flop	T flip-flop	Toggled JK flip-flop	D flip-flop	B	eExam
\square	MCQ	Which logic gate might be called the " any but not all gate?	NAND	XOR	OR	XNOR	B	eExam
\square	MCQ	Which logic gate might be called the " any or all gate"?	NAND	XOR	OR	XNOR	C	eExam
\square	MCQ	Which logic gate might be called the " all or nothing gate"?	NAND	XOR	OR	XNOR	D	eExam
\square	MCQ	Switches arranged in series will act like what type of logic gate?	OR	AND	NOT	NAND	B	eExam
\square	MCQ	Switches arranged in parallel will act like what type of logic gate?	OR	AND	NOT	NAND	A	eExam
\square	MCQ	Tiny electronic binary switches that are connected together to form logic gates are called?	Transformer	capacitors	Resistors	Transistors	D	eExam
\square	MCQ	A minterm is a product term that contains all the variables used in a function	False	not sure	True	none above	C	eExam

\square								
\square	MCQ	The Binary Coded Decimal does not support four bit	True	False	All of the above	None of the above	A	eExam
\square	MCQ	Covert this octal number 5724 to binary numbering system	$\begin{aligned} & 111101001 \\ & 110 \end{aligned}$	$\begin{aligned} & 101111010 \\ & 101 \end{aligned}$	$\begin{aligned} & 101101 \\ & 010100 \end{aligned}$	$\begin{aligned} & 101111 \\ & 010100 \end{aligned}$	D	eExam
\square	MCQ	What range of number is the Octal numbering system?	0 to 8	1 to 8	0 to 7	0 to 10	C	eExam

Showing 1 to 120 of 120 entries

