7/19/2017

eE>	xam Questio	n Bank						
	ecode:							
Choo	ose Coursecode				▼			
ŵ۵	Delete Selected Questions to eExam							
Shov	v 150 • en	tries						
Search:								
	Question Type It	Question	ţ1	A Jt	B ↓†	c 1t	D ↓↑	Answer
	FBQ	theorem states that "Ever matrix satisfies its characteristics polynomial".	ry square	Cayley- Hamilton				
	FBQ	$\begin{bmatrix} 0 & -1 & 3 \\ -1 & 2 & 5 \\ 3 & 5 & -4 \end{bmatrix}$ is a matrix		symmetric				
	MCQ	$\label{eq:list} $$ \frac{1}{1} + \alpha = 1 - \alpha = 1 -$	\;u_1 ,u_2	finite- dimensional	isomorphic	linear transformation	linear functional	D
	MCQ	A linear transformation T on a finite-dimensional vector is if and only if there exists a basis of V con eigenvector of T.		finite- dimensional	linear transformation	diagonalizable	transformative	С
	MCQ	A matrix is a		square array of numbers arranged in rows and columns.	circular array of numbers arranged in rows and columns.	triangular array of numbers arranged in rows and columns.	rectangular array of numbers arranged in rows and columns.	D
	FBQ	A matrix whose determinant is zero is called matrix		singular				
	FBQ	A square matrix A such that \[a_{ij}= 0 \forall i > j \;is\;	called\]	upper triangular				
	FBQ	A square matrix that is equal to the negative of the tra its conjugate is known as	nspose of	skew - Hermitian	skew Hermitian			
	MCQ	A square matrix that is the same as the transpose of in conjugate is known as	ts	Singular matrix	Non-singular matrix	Hermitian	skew - Hermitian	С
	MCQ	A square matrix whose tranpose is equal to the negati matrix itself is known as	ive of the	skew- symmetric	asymmetric	symmetric	negative square	A
	FBQ	A square matrix whose tranpose is equal to the negati matrix itself is known as	ive of the	skew- symmetric				
	MCQ	An m x n matrix A is called a row reduced echelon ma	ıtrix if	the non-zero rows come before the rows	In each non- zero row, the first non-zero entry is one	the first non- zero entry in every non- zero row (after the first row) is to the right of the first non-zero entry in the preceding row	all of the options	D

7/19/2017

Untitled Document

MCQ	Every matrix can be reduced to a row-reduced echelon matrix by a of elementary row operations.	finite sequence	infinite sequence	sequence	series	A	
FBQ	Every vector space is isomorphic to its dual.	second	2nd				
MCQ	Given that U and V are vector spaces over a field F. $[Let;T: U,rightarrow V]$ be a linear transformation, then the set $[x\in U]T(x) = 0$ is called the	transformation	space	kernel of T	range of T	С	
MCQ	Let U and V be finite- dimensional vector spaces over F and \[T : U\rightarrow V\] be a linear transformation , then rank(T) + nullity(T) =	dim(U)	ker(U)	Field(U)	zero	A	
MCQ	Let U and V be vector spaces over a field F and \$\$T : U\rightarrow V\$\$ be a linear transformation, then Range of T is a subspace of	т	U	V	all of the above	С	
MCQ	Let U and V be vector spaces over a field F and dim U = n. Let $T : U$ (T : U rightarrow V) be a linear operator, then rank (T) + nullity (T) =	n	U	V	nU	A	
MCQ	Let U and V be vector spaces over a field F. A linear transformation \[T : U\rightarrow V\] that is one - to-one is called	surjective	injective	subjective	objective	В	
MCQ	Let U and V be vector spaces over a field F. Let $T: U$, under the probability of the pr	monomorphism	isomorphism	dual	kernel	В	
MCQ	Let U, V be vector spaces over a field F of dimensions m and n respectively, then L (U, V) is a vector space of dimension	mn	m+n	m	n	A	
FBQ	The of a matrix is determined by the number of its rows and columns	dimension	order				
FBQ	The determinant of $\begin{bmatrix} 1 & -1 & 2 \\ -2 & -3 & 2 \\ 3 & 0 & 4 \end{bmatrix}$ is	-8	minus eight				
FBQ	The determinant of $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 7 & -4 & 3 \end{bmatrix} is$	3	three				
MCQ	The determinant of \ [\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}\; is]	0	1	2	3	A	
MCQ	The determinant of \ [\begin{bmatrix}2&3\\5&6\\1&1\end{bmatrix}\;\;is\;\]	zero	1	-1	No determinant	D	
MCQ	The determinant of \ [\begin{bmatrix}x&-2&1\\x&5&2x\\1&-2&3\end{bmatrix}\;\;is\; \]	\[-2x^3 + x^2 + 24x+15\]	\[x^2-15x+5\]	\[4x^2+15x-5\]	\[15x-2\]	С	
FBQ	The determinant rank of an m x n matrix A is equal to the of A.	rank					

7/19/2017

FBQ	The determinant rank of the determinant of $ \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} $ <i>is</i>	2	two			
MCQ	The dimension of the matrix \ [\begin{bmatrix}1&2&5\\3&2&8\\1&0&-5\\-2&1&0\end{bmatrix}\;is]	4 by 3	3 by 4	3 by 3	12	A
FBQ	The dimension of the range of T is the same as the of T	rank				
FBQ	The dimesion of the kernel of T is the same as the of T	nullity				
FBQ	The space L (U,F) is the of U given that U is a vector space over F	dual				
MCQ	The of a row-reduced echelon matrix is equal to the number of its non-zero rows	row	rank	column	kernel	В
MCQ	is a square matrix A such that\; \[a_{ij}= 0 \; \forall \; i > j	lower traingular	upper traingular	strictly lower traingular	strictly upper traingular	В

Previous 1 Next