ワeExam Question Bank

\square	MCQ	Every matrix can be reduced to a row-reduced echelon matrix by a \qquad of elementary row operations.	finite sequence	infinite sequence	sequence	series	A			
\square	FBQ	Every vector space is isomorphic to its \square dual.	second	2nd						
\square	MCQ	Given that U and V are vector spaces over a field F. $\backslash[$ Let $\mid ; T$: Ulrightarrow V] be a linear transformation, then the set $\$ \$[x$ lin $\mathrm{U}] \mathrm{T}(\mathrm{x})=0 \$ \$$ is called the	transformation	space	kernel of T	range of T	C			
\square	MCQ	Let U and V be finite- dimensional vector spaces over F and $\backslash[T$: Ulrightarrow V] be a linear transformation, then $\operatorname{rank}(\mathrm{T})+$ $\operatorname{nullity}(\mathrm{T})=\ldots \ldots$.	$\operatorname{dim}(\mathrm{U})$	$\operatorname{ker}(\mathrm{U})$	Field(U)	zero	A			
\square	MCQ	Let U and V be vector spaces over a field F and $\$ \$ T$: Ulrightarrow $\mathrm{V} \$ \$$ be a linear transformation, then Range of T is a subspace of	T	U	V	all of the above	C			
\square	MCQ	Let U and V be vector spaces over a field F and $\operatorname{dim} U=n$. Let \backslash [T : Ulrightarrow V] be a linear operator, then rank (T) + nullity $(T)=$ \qquad	n	U	V	nU	A			
\square	MCQ	Let U and V be vector spaces over a field F. A linear transformation $\[T$: Ulrightarrow $\mathrm{V} \backslash]$ that is one - to-one is called	surjective	injective	subjective	objective	B			
\square	MCQ	Let U and V be vector spaces over a field F. Let $\backslash T$: Ulrightarrow V] be a one-one and onto linear transformation, then T is called \qquad between U and V	monomorphism	isomorphism	dual	kernel	B			
\square	MCQ	Let U, V be vector spaces over a field F of dimensions m and n respectively, then $L(U, V)$ is a vector space of dimension \qquad	mn	m+n	m	n	A			
\square	FBQ	The \square of a matrix is determined by the number of its rows and columns	dimension	order						
\square	FBQ	The determinant of $\left[\begin{array}{ccc} 1 & -1 & 2 \\ -2 & -3 & 2 \\ 3 & 0 & 4 \end{array}\right]$ is \square	-8	minus eight						
\square	FBQ	The determinant of $\left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 7 & -4 & 3 \end{array}\right] \quad \text { is }$	3	three						
\square	MCQ	The determinant of \backslash [lbegin\{bmatrix\}1\&2\&3\|\4\&5\&6	\7\&8\&9lend\{bmatrix\}\}; is \qquad .I]	0	1	2	3	A		
\square	MCQ	The determinant of \backslash [lbegin\{bmatrix\}2\&3								
5\&6										
1\&1\end\{bmatrix\};;;;is\; }	zero	1	-1	No determinant	D					
\square	MCQ	The determinant of \backslash [\begin\{bmatrix\}x\&-2\&1\\|x\&5\&2x	\1\&-2\&3lend\{bmatrix\}	;;;is\; }l]	$\begin{aligned} & \backslash\left[-2 x^{\wedge} 3+x^{\wedge} 2+\right. \\ & 24 x+15 \backslash] \end{aligned}$	$\backslash\left[x^{\wedge} 2-15 x+5 \backslash\right]$	$\backslash\left[4 x^{\wedge} 2+15 x-5 \backslash\right]$	$15x-2$	C	
\square	FBQ	The determinant rank of an $m \times n$ matrix A is equal to the \square of A.	rank							

\square									
\square	FBQ	The determinant rank of the determinant of $\left[\begin{array}{ll} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{array}\right] \quad i s$	2	two					
\square	MCQ	The dimension of the matrix \backslash [\begin\{bmatrix\}1\&2\&5\\|3\&2\&8	\1\&0\&-5						
-2\&1\&0lend\{bmatrix\}\|;is }l]	4 by 3	3 by 4	3 by 3	12	A				
\square	FBQ	The dimension of the range of T is the same as the \square of T	rank						
\square	FBQ	The dimesion of the kernel of T is the same as the \square of T	nullity						
\square	FBQ	The space $L(U, F)$ is the \square of U given that U is a vector space over F	dual						
\square	MCQ	The \qquad of a row-reduced echelon matrix is equal to the number of its non-zero rows	row	rank	column	kernel	B		
\square	MCQ	is a square matrix A such that $; ~ \backslash\left[\mathrm{a} _\{i j\}=0 \backslash\right.$; $\mathrm{forall} \backslash ; \mathrm{i}>\mathrm{j}$ 1]	lower traingular	upper traingular	strictly lower traingular	strictly upper traingular	B		

Showing 1 to 35 of 35 entries

