eExam Question Bank

Coursecode:

Choose Coursecode

囱Delete Selected Questions
\Rightarrow Assign Selected Questions to eExam

Show $150 \quad$ entries
Search:

\square	FBQ	Find the resultant of the following displacements: A, 20 $\mathrm{Km} 30^{\circ}$ south of east; B, 50 Km due west; C, 40 Km northeast; D, $30 \mathrm{Km} 60^{\circ}$ south of west (answer to a decimal place)	20.9									
\square	MCQ	The scalar triple product vanishes if the vectors are	axial vector	planar vector	coplanar vector	flexural vector	C					
\square	MCQ	The scalar product b.c implies that	the length of b divided by the projection of c on b, or vice versa.	the length of b multiplied by the projection of c on b, or vice versa.	the product of b and c multiplied by the projection of c on b, or vice versa.	all of the above	B					
\square	MCQ	The Scalar product is defined as	$aldot \(\mathrm{b}=\mathrm{ab}\) Sinlthetal] & \[aldot b = ab Coslthetal] & \(\backslash[\mathrm{a} \times \mathrm{b}=\mathrm{ab}\) Sinlthetal] & None of the above & B \\ \hline \(\square\) & MCQ & If[[thetal] is the angle between the vectors \(a\) and \(b\), then by elementary trigonometry the length of their sum is given by &\begin{tabular}{l} \[V(a+b)^{\wedge} 2=a^{\wedge} 2+b^{\wedge} 2+$ 2abCoslthetal]\end{tabular}&$\backslash\left[(a+b)^{\wedge} 2=a^{\wedge} 2-b^{\wedge} 2+\right.$ 2abSinlthetal] & $\begin{aligned} & \\ left[(a-b)^{\wedge} 2=a^{\wedge} 2+b^{\wedge} 2+\right. \\ & \text { 2abCoslthetal] } \end{aligned}$	$\begin{aligned} & \backslash(a+b)^{\wedge} 2=a^{\wedge} 2+b^{\wedge} 2 \\ & +2 a b S i n \mid t h e t a l] \end{aligned}$	A							
\square	MCQ	The addition of two vectors a and b defined geometrically by drawing one vector from the head of a to b is known as the. \qquad	triangular law for addition of forces.	rectangular law for addition of forces	law of addition of forces	parallelogram law for addition of forces	D					
\square	MCQ	What is the relationship between vectors a and b if \backslash [aldot $\mathrm{b}=0$ \]?	Parallel	Symmetrical	Perpendicular	Asymmetrical	C					
\square	MCQ	The vector product of any two non-parallel vectors a and b drawn from 0 define a unique axis through the origin 0 perpendicular to the plane containing a and b is given by	\$\$left\|a \times b \right	= ab sin ltheta\$\$	\$\$Veft\|a	times b \right	= ab cos ltheta\$\$	\$\$left\|b \times a \right	= ab sin \theta\$\$	\$\$Veft\|b \times a \right	= ab cos \theta\$\$	A
\square	MCQ	Gauss' theorem states that if V is a volume in space bounded by the closed surface S ,then for any vector field B	\$\$liint dV bigtriangledownlcdot B = liint_\{s\} dS \cdot B\$\$	\$\$1iiint_\{v\} dV bigtriangledownlcdot B = liint_\{s\} dV \cdot B\$\$	\$\$iiiint_\{v\} dV bigtriangledownlcdot B = liint_\{s\} dS \cdot B\$\$	\$\$1iiint_\{v\} dV1bigtriangledownlcdot S = liint_\{s\} dS \cdot B\$\$	B					
\square	MCQ	Stokes' theorem states that if A is any vector field, then	\$ \$ intlint dSIcdot(\bigtriangledown \|times A) = loint_\{c\}drlcdot A\$\$	\$ $\$$ lintlint dSIcdot(lbigtriangledown \|times A) = loint drlcdot A\$\$	\$ $\$$ lint dSIcdot(\bigtriangledown \|times A) = loint_\{0\}drlcdot A\$\$	none of the above	A					
\square	MCQ	The vector product of a and b is denoted by	\$\$a \cdot b\$\$	a, b	$\backslash\left[a^{\wedge} \mathrm{b} \backslash\right]$	$a \times b$	D					
\square	MCQ	Let T be a symmetric tensor such that \$\$T.a = Vlambda a\$\$ then $\$ \$$ llambda $\$ \$$ is called. \qquad of T	unit vector	eigenvalue	eigenvector	all of the above	B					
\square	MCQ	Let T be a symmetric tensor such that \$\$T.a = Vlambda a\$\$ then a is called. \qquad of T	unit vector	eigenvalue	eigenvector	all of the above	C					
\square	MCQ	When was a system of particles in equilibrium?	When the total virtual work of the actual force is at equilibrium	When the total virtual work of the actual force is zero	When the total virtual work of the actual force is constant	When the total force of the actual virtual work is zero	B					

\square	MCQ	Let $\$ \$ \mathrm{a}=(3 \mathrm{i}-2 \mathrm{j}+\mathrm{k}) \$ \$, \$ \$ \mathrm{~b}=2 \mathrm{i}-4 \mathrm{j}-$ $3 k \$ \$$ and $\$ \$ c=-i+2 j+2 k \$ \$$, find the magnitude of $a+b+c$	\$\$41sqrt\{2\}\$\$	\$\$51sqrt\{2\}\$\$	\$\$81sqrt\{3\}\$\$	\$\$41sqrt\{3\}\$\$	A
\square	MCQ	For a body of mass m with a acceleration D' Alembert's principle can be expressed as	$\begin{aligned} & \$ \$\left(m _\{i\} a _\{i\}\right) . \text { Idelta } \\ & \text { r_\{i\}=0\$\$ } \end{aligned}$	$\begin{aligned} & \text { \$\$(Isum_\{N\}^\{i=1\}F_\{i\}- } \\ & \text { m_\{i\}a_\{i\}).Idelta } \\ & \text { r_\{i\}=\|frac\{m\}\{a\} \$\$ } \end{aligned}$	$\begin{aligned} & \$ \$(\text { lsum_\{N\}^\{i=1\}F_\{i\}-- } \\ & \text { m_\{i\}a_\{i\}).Idelta } \\ & \text { r_\{i\}=0\$\$ } \end{aligned}$	$\begin{aligned} & \text { \$\$(lsum_\{N\}^\{i=1\}m_\{i\}- } \\ & \text { m_\{i\}a_i\}).Idelta } \\ & \text { r_\{i\}=0\$\$ } \end{aligned}$	C
\square	MCQ	The force acting on a particle at time t is $F(t)=6 t i+j$, If the particle starts from the point $(3,-1,2)$ with the velocity $\mathrm{v}(0)=4 \mathrm{k}$, find parametric equations of its path in y directio	\$\$y=\frac $\{3 \mathrm{t}\}\{2 \mathrm{~m}\}-6 \$ \$$	\$\$y=lfrac $\{t\}\{2 m\}-2 \$ \$$	\$\$y=\|frac $\left\{t^{\wedge}\{3\}\right\}\{2 \mathrm{~m}\}-3 \$ \$$	$\begin{aligned} & \$ \$ y=\backslash f r a c\{t \wedge\{2\}\} \\ & \{2 \mathrm{~m}\}-1 \$ \$ \end{aligned}$	D
\square	MCQ	Determine the unit tangent vector for the curve $\mathrm{x}=3 \mathrm{t}$; $\mathrm{y}=2 \mathrm{t} 2$; $z=t 2+t$ at the point $(6,8,6)$.	$\begin{aligned} & \$ \$ \mid f r a c\{2\}\{\text { sqrt }\{3\}\} \\ & (2 i+8 j+6 k) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ \mid f r a c\{5\} \backslash \text { sqrt }\{81\}\} \\ & (i+2 j+5 k) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ \mid f r a c\{1\} \backslash \text { sqrt\{ } 98\}\} \\ & (3 i+8 j+5 k) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ \mid \text { frac }\{3\}\{\text { sqrt }\{5\}\} \\ & (3 i+j+5 k) \$ \$ \end{aligned}$	C
\square	MCQ	$\begin{aligned} & \text { If } \$ \$ F=\mathrm{isin} 2 \mathrm{t}+\mathrm{je} \wedge\{3 \mathrm{t}\}+\mathrm{k}\left(\mathrm{t}^{\wedge}\{\mathrm{t}\}-4 \mathrm{t}\right) \\ & \$ \$ \text {, find } \mathrm{dF} / \mathrm{dt} \end{aligned}$	\$\$2cos2i+3e^\{3\}j-k \$\$	\$\$cos2i+3e^\{3\}j-k \$\$	\$\$2cos2i+3e^\{3\}j-4k \$\$	\$\$2cosi $+3 e^{\wedge}\{3\} j-2 k \$ \$$	A
\square	MCQ	$\$ \$ A=2 i+3 j+4 k \$ \$$ and $\$ \$ B=i-$ $2 j+3 k \$ \$$ find the angle between vectors A and B	\$\$32^\{0\}54^\{1\}\$\$	\$\$48^\{0\}32^\{1\}\$\$	\$\$72^\{0\}30^\{1\}\$\$	\$\$66^\{0\}36^\{1\}\$\$	D
\square	MCQ	A man travelling southward at $15 \mathrm{~m} / \mathrm{hr}$ observes that the wind appears to be coming from the west. On increasing his speed to $25 \mathrm{~m} / \mathrm{hr}$ it appears to be coming from the southwest. Find the direction and speed of the wind	The wind is coming from a direction $56^{\circ} 18^{\prime}$ east of west at $15 \mathrm{~m} / \mathrm{hr}$	The wind is coming from a direction $56^{\circ} 18^{\prime}$ north of west at $18 \mathrm{~m} / \mathrm{hr}$	The wind is coming from a direction $56^{\circ} 18^{\prime}$ south of west at $15 \mathrm{~m} / \mathrm{hr}$	The wind is coming from a direction $56^{\circ} 18^{\prime}$ north of east at $18 \mathrm{~m} / \mathrm{hr}$	B

Showing 1 to 35 of 35 entries

