

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September 2020_1 Examination

Course Code:	MTH 303
Course Title:	Vectors and Tensors Analysis
Credit Unit:	3
Time Allowed:	3 Hours
Instruction:	Answer Question Number One and Any Other Four Questions

- 1. (a) (i) Show that the angle between two vectors $\underline{a} = (a_1, a_2, a_3)$ and $\underline{b} = (b_1, b_2, b_3)$ can be expressed as $\theta = \cos^{-1} \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{|\underline{a}||\underline{b}|}$ (4 marks) (ii) Give the definition of the magnitude of a vector product in terms of the area of a parallelogram. (2 marks) (iii) Show that if $\underline{a} \wedge \underline{b} = 0$ and neither $\underline{a} = 0$ nor $\underline{b} = 0$, then \underline{a} and \underline{b} are parallel. (b) Define the followings: (3 marks) (i) Derivative of a vector function A(u)(2 marks) (ii) Gradient of the function $\phi(x, y, z)$ (2 marks) (iii) the curl of a vector function A (3 marks) (c) (i)State the Divergence Theorem (3 marks) (3 marks) (ii) State Stoke's Theorem
- 2. (a) If <u>A</u>, <u>B</u>, <u>C</u> are differentiable vector functions of a scalar u, give the expressions for the following derivatives. I. $\frac{d}{du} \left(\underline{A} \cdot (\underline{B} \wedge \underline{C}) \right)$ II. $\frac{d}{du} \left(\underline{A} \wedge (\underline{B} \wedge \underline{C}) \right)$ (4 marks)
 - (b) Given a vector $\underline{Q} = \cos 3ti + \sin 3tj$, obtain $\left|\frac{dQ}{dt}\right|$ (4 marks)
 - (c) Show that Grad $\emptyset \cdot dr = d\emptyset$ (4 marks)

3.	(a) Show that $\frac{d\phi}{ds} = \frac{dr}{ds} \cdot Grad \phi$	(4 marks)
	(b) If $\emptyset(n, y, z) = 2n^2yz^2$, find $\nabla \emptyset$	(4 marks)
	(c) If $\phi = n^2 yz$ a scalar function and $\underline{A} = 2nzi + yzj - ny^2k$, find $\nabla \cdot (\phi$	(\underline{A}) at the point
	(1, -1, 1).	(4 marks)

- 4. (a) What is summation convention? (3 marks)
 (b) Define the contravariant component of a tensor of the second rank. (3 marks)
 (c) Explain the terms 'Outer product of tensors' and 'Contraction' (6 marks)
- 5. (a) Evaluate $\int_c (x + 3y) dx$ from A(0, 1) to B(2, 5) along the curve y = 1+x². (6 marks)
- (b) Evaluate $I = \int_c \{(x^2 + 2y)dx + xydy\}$ from O(0, 0) to B(1, 4) along the curve $y = 4x^2$. (6 marks)
- 6. (a) Evaluate the double integral $\iint_R (x^2 y^3) dx dy$, $1 \le x \le 2$, $2 \le y \le 4$ (6 marks) (b) A solid is enclosed by the planes z = 0, y = 1, y = 2, x = 0, x = 3 and the surface $z = x + y^2$. Determine the volume of the solid so formed (6 marks)