

# NATIONAL OPEN UNIVERSITY OF NIGERIA <br> Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. <br> FACULTY OF SCIENCES <br> DEPARTMENT OF MATHEMATICS 

September Examination 2020_1

## Course Code: MTH 307

Course Title: Numerical Analysis II
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Question Number One and Any Other Four Questions
1a. Let $\mathrm{f}(\mathrm{x})$ be a continuous function for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$, then $\mathrm{c}[\mathrm{a}, \mathrm{b}]$ the set of all continuous real valued function in the interval $[\mathrm{a}, \mathrm{b}]$, State the infinite or Chebyshev norm and its properties.

## (5 marks)

b. Find the Cubic approximation to $\mathrm{e}^{\mathrm{x}}$ by using Chebyshev polynomial.
c. Generate the Chebyshev polynomial up to degree 5 in power of $x$
d. Define $P_{n}(x)$ by RODRIGUE'S formula and state the three properties of $P_{n}(x)$. (4 marks)

2a. Convert the first five term of the Taylor Series Expansion for $\mathrm{e}^{\mathrm{x}}$ into Chebyshev Polynomial.
b. Construct the cubic Spline Interpolant to $\mathrm{f}(\mathrm{x})=\mathrm{x}$ with knots $-1 \quad 0 \quad 1$ subject to clamped boundary conditions.
(7 marks)

3a. Consider the boundary Value problem $U^{\prime \prime}+\left(1+x^{2}\right) U+1=0, \quad U( \pm 1)=0$. Determine the coefficient of the approximate solution $w(x)=a_{1}\left(1-x^{2}\right)+a_{2} x^{2}\left(1-x^{2}\right)$ by using the least square method.
(6 marks)
b. Use Taylor series approach to solve

$$
y^{\prime \prime}+y=0, \quad y(0)=0, y^{\prime}(0)=1 \text { for } h=0.05 \text { at } x=0.1
$$

(6 marks)

4a. Compute the min-max polynomial $q_{1}^{*}(x)$ to $e^{x}$ on interval $[-1,1]$. Hence, tabulate the error at $[-1,1]$.
b. Estimate $\operatorname{In}(2.7)$ from the following data

| $\mathrm{x}_{\mathrm{i}}$ | 2 | 2.5 | 3 |
| :---: | :--- | :--- | :--- |
| In $\mathrm{x}_{\mathrm{i}}$ | 0.693147 | 0.916291 | 1.098612 |
| $1 / \mathrm{x}$ | 0.5 | 0.4 | 0.333333 |

(8 marks)

5a. Prove the orthogonality of Chebyshev polynomial with respect to weight function $w(x)=\left(1-x^{2}\right)^{-\frac{1}{2}}$ where

$$
\int_{x_{0}=-1}^{x_{1}=1} T_{n}(x) T_{m}(x) w(x) d x=\left\{\begin{array}{lr}
0, & m \neq n \\
\frac{\pi}{2}, & m=n \neq 0 \\
\pi, & m=n=0
\end{array}\right.
$$

b. Find the forth degree least square polynomial of /x/ over [-1, 1] by means of Legendre Polynomial.

6a. Calculate a linear least square approximation to $f(x)$, if $f(x)=e^{x}$ on interval $[-1,1]$.
b. Evaluate $\int_{0}^{3} \sin x d x$ with $\mathrm{h}=\pi / 12$, correct to 5 decimal places using Trapezoidal rule.

