

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September Examination 2020_1

Course Code: MTH 307 Course Title: Numerical Analysis II Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any Other Four Questions

1a. Let f(x) be a continuous function for $a \le x \le b$, then c[a, b] the set of all continuous real valued function in the interval [a, b], State the infinite or Chebyshev norm and its properties.

		(5 marks)
b.	Find the Cubic approximation to e ^x by using Chebyshev polynomial.	(8 marks)
c.	Generate the Chebyshev polynomial up to degree 5 in power of x	(5 marks)
d.	Define $P_n(x)$ by RODRIGUE'S formula and state the three properties of F	$P_n(x)$. (4 marks)

2a. Convert the first five term of the Taylor Series Expansion for e^x into Chebyshev Polynomial.

(5 marks)

- b. Construct the cubic Spline Interpolant to f(x) = x with knots -1 0 1 subject to clamped boundary conditions. (7 marks)
- 3a. Consider the boundary Value problem $U'' + (1 + x^2)U + 1 = 0$, $U(\pm 1) = 0$. Determine the coefficient of the approximate solution $w(x) = a_1(1 x^2) + a_2x^2(1 x^2)$ by using the least square method. (6 marks)
- b. Use Taylor series approach to solve

$$y'' + y = 0$$
, $y(0) = 0$, $y'(0) = 1$ for $h = 0.05$ at $x = 0.1$ (6 marks)

- 4a. Compute the min-max polynomial $q_1^*(x)$ to e^x on interval [-1, 1]. Hence, tabulate the error at [-1, 1]. (4 marks)
- b. Estimate In(2.7) from the following data

Xi	2	2.5	3
In x _i	0.693147	0.916291	1.098612
1/x	0.5	0.4	0.333333

(8 marks)

5a. Prove the orthogonality of Chebyshev polynomial with respect to weight function $w(x) = (1 - x^2)^{-\frac{1}{2}}$ where

$$\int_{x_0=-1}^{x_1=1} T_n(x)T_m(x)w(x)dx = \begin{cases} 0, & m \neq n \\ \frac{\pi}{2}, & m = n \neq 0 \\ \pi, & m = n = 0 \end{cases}$$
(8 marks)

- b. Find the forth degree least square polynomial of /x/ over [-1, 1] by means of Legendre Polynomial. (4 marks)
- 6a. Calculate a linear least square approximation to f(x), if $f(x) = e^x$ on interval [-1, 1].

(7 marks)

b. Evaluate $\int_{0}^{\pi} \sin x dx$ with $h = \pi/12$, correct to 5 decimal places using Trapezoidal rule.

(5 marks)