NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

September 2020_1 Examination

Course Code: MTH 309
Course Title: Optimization Theory
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Question Number One and Any Other Four Questions
1 (a) Define clearly the following terms:
(i) Feasible Solution.
(ii) Basic feasible solution.
(iii) Non-degenerate feasible solution.
(iv) Degenerate basic feasible solution.
(v) Convex set.
(vi) Convex function.
(12 marks)
(b) Consider the following problem.

$$
\begin{aligned}
& \text { Maximize } 2 x_{1}+5 x_{2} \\
& \text { Subject to: } x_{1}+2 x_{2} \leq 16 \\
& 2 x_{1}+x_{2} \leq 12 \\
& \text { With } x_{1}, x_{2} \geq 0
\end{aligned}
$$

(i) Sketch the feasible region in the $\left(x_{1}, x_{2}\right)$ space.
(ii) Identify the region in the $\left(x_{1}, x_{2}\right)$ space where the slack variable x_{3} and x_{4} are equal to zero.
(iii) Solve the problem using graphical method.
(10 marks

2 (a) State five important results in duality.
(5 marks)
(b) Solve the following LPP

$$
\begin{aligned}
& \text { Maximize } z=6 x_{1}+8 x_{2} \\
& \text { Subject to: } 5 x_{1}+2 x_{2} \leq 20 \\
& \qquad x_{1}+2 x_{2} \leq 10 \\
& \text { With } x_{1}, x_{2} \geq 0
\end{aligned}
$$

by solving its dual problem.
(7 marks)

3 Define and give an example (with justification) of the following in \mathbb{R}^{n}.
(a) Continuous function
(b) Differentiablity
(c) Partial derivative
(d) Directional derivative.
(12 marks)
4 (a) When is a quadratic form said to be:
(i) Positive semidefinite;
(2 marks)
(ii) Negative semidefinite.
(3 marks)
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which satisfies $f(x+y)=f(x) f(y) \forall x, y \in \mathbb{R}$
(i) Show that if f is continuous at $x=0$, then it is continuous at every point of \mathbb{R}
(ii) Show that $\forall m \in \mathbb{Z} ; f(m x)=(f(x))^{m}$.
(7 marks)

5 (a) State (without proof) the Weierstrass theorem.
(4 marks)
(b) Let $f: D \rightarrow \mathbb{R}$, where D is a nonempty closed subset of \mathbb{R}^{n}. Prove that if f is coercive and continuous on some open set containing D then
(i) the function f is bounded below on D.
(ii) any minimizing sequence of f in D is bounded.
(8 marks)

6 (a) Find the minimum and maximum of $f(x, y)=x^{2}-y^{2}$ on the unit circle $x^{2}+y^{2}=1$ using the Lagrange multipliers method.
(5 marks)
(b) Find the Local and global minimizers and maximizers of the $f(x)=x^{2} e^{-x^{2}}$.
(c) State any theorem that links convexity and optimization.
(3 marks)

