

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS SEPTEMBER 2020_1 EXAMINATION

Course Code: MTH 311 Course Title: Calculus of Several Variables Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any other Four Questions

1 a) Investigate
$$\lim_{h \to 0} \frac{\sin(3h)}{h}$$
[3 Marks]b) Find the extrema value of $f(x, y) = x^2 - 8 \ln x$ at [1,4][5 Marks]

c) Check that
$$\frac{\partial^2 f}{\partial u \partial t} = \frac{\partial^2 f}{\partial t \partial u}$$
 for $f = e^{\frac{u}{t}}$ [4 Marks]

d) Write out the Langrage equation for
$$f(x, y) = 2x + 5y$$
 on the ellipse $\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$ [6 Marks]

- e) Write $h(x, y) = e^{-x^3 y}$ as a composite function and evaluate $\lim_{(x,y)\to(1,2)} h(x, y)$ [4 Marks]
- 2. a) Calculate the second order partial of $f(x, y) = x^3 + y^2 e^x$ [5 Marks]
- b) The altitude of a mountain at (x, y) is $f(x, y) = 2500 + 100(x + y^2)e^{-0.3y^2}$. Find the directional derivative of f at P = (-1, -1) in the direction of unit vector u making an angle of $\frac{\theta}{4}$ with the gradient. [7 Marks]

3a) Find the critical points of $f(x, y) = (x^2 + y^2)e^{-x}$ and analyze them using the second derivative test. [8 Marks]

b) Let f(x, y) be a function of two variables, and let (r, θ) be polar coordinate, express $\frac{\partial f}{\partial \theta}$ in terms

of
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ [4 Marks]

4. a) Find the maximum and minimum value of $f(x, y) = 81x^2 + y^2$ subject to the constraint

$$4x^2 + y^2 = 9$$
 [6 Marks]

b) Find the dimension of the box with largest volume if the total surface area is $32cm^2$. [6 Marks]

5. a) If
$$x = u - v + w$$
, $y = u^2 - v^2 - w^2$ and $z = u^3 + v$, Find Jacobian $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ [4 Marks]

- b) If f(x, y) = 5x 3y subject to the constraint $x^2 + y^2 = 136$
 - (i) Write out the Langrage equation [2 Marks]
 - (ii) Find the maximum and minimum value of f(x, y) [6 Marks]

6. a) If
$$f(x, y) = x^3 y^2$$
, find $\frac{df}{dt}$ if $x^5 + y = t$ and $x^2 + y^3 = t^3$ [4 Marks]

b) Find the maximum and minimum of f(x, y, z) = 4y - 2z subject to the constraints 2x - y - z = 2 and $x^2 + y^2 = 1$ [8 Marks]