

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja **FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS June Examination 2020**

Course Code: MTH341 Course Title: Real Analysis **Credit Unit:** 3 **Time Allowed: 3 Hours** Answer Number One (1) and Any Other Four (4) Questions **Instruction:**

1. Define the following: (2 marks) i. Derivative at a point ii. Derivative in an interval (2 marks)

b. Let $f: R \to R$ be a function defined as $f(x) = x^2 \cos(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0. Find the derivative of f at x = 0, if it exists. (6 marks)

c. Let a function $f:[0,5] \rightarrow R$ be defined as $f(x) = \begin{pmatrix} 2x+1, 0 \le x \le 3 \\ x^2-2, 3 \le x \le 5 \end{pmatrix}$ is

$$f$$
 derivable at x = 3

d. Show that the function f defined on R by $f(x) = x^3 - 3x^2 + 3x - 5$ for all

 $x \in R$ is increasing in every interval. (6 marks)

- 2. Separate the intervals in which the function f defined on R by $f(x) = 2x^3 15x^2 + 36x + 5$ for all $x \in R$ is increasing in every interval (8 marks)
- b. Let $f : R \rightarrow R$ be a continuous function defined on R. Show that f

i.
$$f(x) = x^3 - 6x^2 + 11x - 6$$
 for all $x \in [1,3]$ (6 marks)

ii. $f(x) = (x-a)^m (x-b)^n$ for all $x \in [a,b]$ where m and n are positive integers (6 marks)

(6 marks)

(4 marks)

4. Show that there is no real number λ , for which the equation $f(x) = x^3 - 27x + \lambda = 0$ has two distinct roots in [0,2] (12 marks)

- 5. Let f be the function defined on [-1,2] as f(x) = |x|. Find the derivative of f (6 Marks)
- b. Verify the hypothesis and conclusion of Langrange's mean value theorem for the functions

defined as
$$f(x) = \frac{1}{x}$$
 for all $x \in [1,4]$ (6 marks)

6. Apply Cauchy's mean value theorem to the functions f and g defined as $f(x) = x^2$, g(x) = x

for all
$$x \in [a,b]$$
. (6 marks)

b. Show that $\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$. where $0 < \alpha < \theta < \beta < \frac{\pi}{2}$ (6 marks)