

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September Examination 2020_1

Course Code: MTH 381 Course Title: Mathematical Methods III Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any other Four Questions.

1. a) If
$$x = r \cos \theta$$
 and $y = r \sin \theta$, evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$. [5 Marks]

b) Evaluate
$$\int_{0}^{1} dx \int_{0}^{x} e^{\frac{y}{x}} dy$$
 [4 Marks]
c) Calculate the *curl* of the vector $\vec{f} = xyzi + 3x^2yj + (xz^2 - y^2z)k$ [4 Marks]
d) Show that the function $e^x(\cos y + i \sin y)$ is an analytic function, find its derivative. [5 Marks]
e) Find the *Laplace* transform of $\frac{\sin 2t}{t}$. [4 Marks]
2. a) If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 = -\frac{9}{(x + y + z)^2}$ [7 Marks]
b) Using Stoke's theorem or otherwise, evaluate $\int_{c} [(2x - y)dx - yz^2dy - y^2zdz]$ where *C* is the circle $x^2 + y^2 = 1$, corresponding to the surface of sphere of unit radius. [5 Marks]
3. a) Compute $\iiint \frac{dxdydz}{(x + y + z + 1)^3}$, if the region of integration is bounded by the coordinate planes and the plane is $x + y + z = 1$. [7 Marks]
b) Find the complex Fourier transform of Dirac delta function $\delta(t - a)$. [5 Marks]
4. a) Find the Fourier series representing $f(x) = x$, $0 < x < 2\pi$ [8 Marks]
b) Find the inverse Laplace transform of $\frac{1}{s^2 + 25}$. [4 Marks]
c) along the parabola $x = t$, $y = t^2$ where $1 \le t \le 2$. [4 Marks]
(i) along the straight line joining the line $1 + i$ and $2 + 4i$ [4 Marks]
b) Find the fourier sine and cosine transform of $f(x) = 1$ in $(0, \pi)$. [4 Marks]

6. a) Evaluate $\iint_{\Re} \sqrt{x^2 + y^2} \, dx \, dy$, where \Re is the region bounded by $x^2 + y^2 = 4$ and $x^2 + y^2 = 9$ [6 Marks]

b) Determine the residues of $\frac{z^2}{(z-2)(z^2+1)}$ at each simple pole. [6 Marks]