

Course Code:MTH402Course Title:General Topology IICredit Unit:3Time Allowed:3 HoursInstruction:Attempt Number One (1) and Any Other Four (4) Questions

- 1. (a) Define a topological space. (3 marks) (b) Show that the intersection $\tau = \bigcap_{\alpha} \tau_{\alpha}$ of topologies { $\tau_{\alpha \in \Delta}$ on X is itself a topology in X}, where Δ is some indexing set. (14 marks) (c) Let X and Y be two topological spaces. Let **B** be the collection of all sets of the form U x V, where U is an open subset of X and V is an open subset of Y. i.e., **B** := {U x V : U is open in X and V is open in Y}. Show that **B** is basis for topology on X x Y. (3 marks) (d) Let Y be a subspace of X. If U is open in Y and Y is open in X, show that U is open in X. (2 marks) 2. (a) Define the following terms: (i) basis for a topology on a set X. (3 marks) (ii) topology generated by a basis. (3 marks) (b) Let **B** and **B**⁰ be bases for the topologies τ and τ^0 respectively on X. Show that the following are equivalent: i. τ^0 is finer than τ . (3 marks) ii. For each $x \in X$ and each element $B \in B$ containing x, there exists a basis element $B^0 \in B^0$ such that $x \in B^0 \subset B$. (3 marks) 3. (a) Let d be a metric on the set X. Show that the collection of all r - balls $B_d(x, r)$, for
 - $x \in X$ and r > 0 is a basis for a topology on X, called the metric topology induced by d. (6 marks)
 - (b) Prove that the collection $S = \{\pi_1^{-1}(U): U \text{ is open in } X\} \cup \{\pi_2^{-1}(V): V \text{ is open in } Y\}$ is a subbasis for the product on X x Y. (6 marks)
 - 4. (a) Let Y be a subspace of X. Show that a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y. (6 marks)
 (b) Let A be a subset of the topological space X. Prove that:

(i) The $x \in \overline{A}$ if and only if every open set U containing x intersects A.

(ii) Supposing the topology of X is given by a basis, then $x \in \overline{A}$ if and only if every basis element B containing x intersects A. (6 marks)

- 5. (a) Let A be a subset of the topological space X. Let A^0 be the set of all limit points of A. Show that $\overline{A} = A \cup A^0$. (6 marks)
 - (b) State whether each of the following is a Hausdorff space or not: (i) Every metric topology. (ii) Every discrete space. $(1\frac{1}{2} \text{ marks})$
 - (iii) The real line R with the finite complement topology.
 - (iv) R with the usual topology.
- e complement topology. $\begin{pmatrix} 1 \frac{2}{1} \text{ marks} \\ (1 \frac{1}{2} \text{ marks}) \\ (1 \frac{1}{2} \text{ marks}) \\ (1 \frac{1}{2} \text{ marks}) \end{pmatrix}$
- 6. (a) Show that if X is a Hausdorff space, then for all $x \in X$, the singleton set $\{x\}$ is closed. (7 marks)
 - (b) Let X be a Hausdorff space, then a sequence of points of X converges to at most one point of X. (i.e., if a sequence $\{x_n\}$ in X, a Hausdorff space, converges, the limit is unique. (5 marks)