

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS September Examination, 2020_1

Course Code: MTH 411

Course Title: Measure Theory and Integration

Credit Unit: 3

Time Allowed: 3 Hours

Instruction: Attempt Number One (1) and Any Other Four (4) Questions

- (a) Describe the greatest lower bound of the measures of all bounded open sets containing set G. (1 mark)
 (b) Let G₁, G₂ be open sets such that G₁ ⊆ G₂, prove that m(G₁) ≤ m(G₂). (5 marks)
 (c) Let X be an arbitrary set. State the properties of the collection Ω of subsets of X to be called an algebra. (4 marks)
 (d) Write on measurable function f: A → [-∞, +∞] by stating the four conditions f must satisfy. (4 marks)
 (e) Distinguish between a measurable function and a Borel function using four examples. (8 marks)
- 2. Let (X, *M*) be a measurable space, and let fl be a finitely additive measure on (X, *M*). Show that fl is a measure if either

(i) lim_k fl(A_k) = fl(U_k A_k) holds for each increasing sequence {A_k } of sets that belong to $\mathscr{M}.$ Or

(ii) $\lim_k fl(A_k) = 0$ holds for each decreasing sequence $\{A_k\}$ of sets that belong to \mathcal{M} and satisfy $\bigcap_k A_k = \emptyset$. (12 marks)

3.	(a) When is S: $X \to \mathbb{R}$ a simple function?	(2 marks)
	(b) State Beppo Levi's theorem.	(4 marks)
	(c) Let (X, \mathcal{M}) be a measurable space, let A be a subset of X that belongs to \mathcal{M} , and	
	let f and g be $[-\infty, +\infty]$ - valued measurable functions on A.	
	Show that $f \lor g$ and $f \land g$ are measurable.	(6 marks)

- 4. (a) State (i) Monotone Convergence theorem. (3 marks) (ii) Dominated Convergence theorem. (4 marks)
 (b) Let (X, M, fl) be a measure space, and let f and g be extended real-valued functions on X that are equal almost everywhere. If fl is complete and if f is measurable, explain What is meant by g is measurable. (5 marks)
- 5. Let (X, \mathcal{M}, fl) be a measure space. Explain the properties that hold almost everywhere. (12 marks)
- 6. (a) Define equivalent functions. (3 marks) (b) Let { n } be a sequence of measurable functions. n : X \rightarrow C a.e. Suppose that $\Sigma_{n=1} \int_{x} |n| d fl < \infty$. Show that $\Sigma_{n=1 n}(x)$ converges to f(x) a.e on X. (9 marks)