| Question
Type J | Question | A 11 | в Џ | c 11 | D 11 | Answer ↓↑ | Remark 🎵 | |--------------------|---|-------------|-------------|------|------|-----------|----------| | FBQ | A type of rechargable cell in common use for electrical experiments in the laboratory, which can supply relatively constant voltage and current for a relatively longer period of time is called | accumulator | accumulator | | | | eExam | | FBQ | A student designed a circuit which consisted of two variable resistors P and Q, two cells E1 and E2 of negligible internal resistance and a galvanometer. He connected E1 across the series combination of P and Q and then connects the series combination of the cell E2 and the galvanometer across P. He adjusted the variable resistances to obtain a null condition of the galvanometer. The ratio of the emf of E2 to that of E1 is (You may choose your answer from the list: P/Q, (P+Q)/Q, P/(P+Q), Q/(P+Q) | P/(P+Q) | P/(P+Q) | | | | eExam | | FBQ | In the absence of a slider contact a clip may be used in experiments involving the use of metre bridge | crocodile | crocodile | | | | eExam | | FBQ | In an experiment to determine the internal resistance r of a dry cell using the potentiometer, the resistance box was used to provide different values of the external resistance R in the circuit. A graph of 1/R against was plotted to obtain a straight line of the form y = mx + c, where m = 11/12, 11 and 12 being the balance lengths for open and closed circuits respectively. The intercept on the horizontal axis when 1/R = 0 is used to find the internal resistance fo the cell | 1/r | 1/r | | | | eExam | | FBQ | In an experiment involving two resistances in series, the slope of the graph of V against I represents | equivalent
resistance | equivalent resistance | | eExam | |-----|--|--------------------------|-----------------------|--|-------| | FBQ | For a metallic conductor, Ohm's law holds provided | temperature | temperature | | eExam | | FBQ | When plotting straight line graphs of experimental data, the line is referred to as line of | bestfit | bestfit | | eExam | | FBQ | An electrical source with internal resistance r is used to operate a lamp of resistance R. The fraction of the total power delivered to the lamp is You may choose your answer from: (r+R)/R, (r+R)/r, R/(r+R), R/r | R/(r+R) | R/(r+R) | | eExam | | FBQ | Another means of introducing variable resistance into a ciruit instead of resistance wire is to use box | resistance | resistance | | eExam | | FBQ | A 3V- battery with internal resistance of 0.5Ω is connected across a parallel combination of a 1-\$\Omega and 2-\Omega resistances. The current in the 2-\Omega\$ resistance is A to 2 decimal places | 0.91 | 0.91 | | eExam | | FBQ | In an experiment, \$\frac{1}{V}\$ is plotted against \$\frac{1}{I}\$. The physical significance of the slope of the graph is | conductance | conductance | | eExam | | FBQ | A 1 m\$\Omega\$ resistor is to be made from a 1-mm diameter wire of resistivity \$2.8 \times 10^{-8} \Omega{m}\$. The length of the wire to one place of decimal is cm | 2.8 | 2.8 | | eExam | | FBQ | Two resistances of 2 \$\Omega\$ each are connected in parallel and then connected in series to a 1\$\Omega\$ resistance.The equivalent resistance is \$\Omega\$ | 2 | two | | eExam | | FBQ | Kirchoff's loop rule represents conservation of | energy | energy | | eExam | | FBQ | The relation between the current I, through the heated filament and the applied voltage, V, is given by the general form \$\$I = KV^{n}\$\$, where K and n are constants. For the empirical relationship between I and V, a straight line graph is plotted from the relation log I = | n log V + log
K | log K+n log V | | eExam | |-----|--|--------------------|-------------------|--|-------| | FBQ | The slide wire of the figure shown is balanced when the the uniform slide wire AB is divided as shown. The value of the resistance X is \$\$\Omega\$\$ | 2 | two | | eExam | | FBQ | The diagram shown is called a | metre bridge | Wheatstone bridge | | eExam | | FBQ | The device shown is called | Wheatstone bridge | Wheatstone bridge | | eExam | | FBQ | The difference between the emf of a battery and the lost volts when discharging is called potential difference or voltage | terminal | terminal | | еЕхат | | FBQ | Resistances in series have the same | current | current | | eExam | | FBQ | In the circuit shown, the name of the device which provides silding contact with the resistance wire PQ is called | jockey | jockey | | eExam | | FBQ | A cell such Weston cadmium cell is used in a suitable circuit to determine the emf of unknown cell | standard | standard | | eExam | | FBQ | To change a galvanometer to a voltmeter, connect a high resistance in to it | series | series | | eExam | | FBQ | In the circuit shown, the wire PQ is usually made up of a material called | constantan | constantan | | eExam | | FBQ | In the circuit diagram shown, the device marked X is a | galvanometer | galvanometer | | eExam | | | | | | | | | FBQ | In the circuit diagram shown, the wire PQ has the resistance of \$\$5\Omega\$\$ and the driver cell has an emf of 2.00 V. The value of the resistance R if a balance point is obtained at 0.600 m along PQ when measuring an emf of 6.00mV? is (Leave your answer to the nearest whole number) | 995 | 995 | | еЕхат | |-----|--|-------------------------|------------------------|--|-------| | FBQ | The null condition in experiments involving the use of the device shown implies that the sare balanced | potential
difference | voltage | | еЕхат | | FBQ | The advantage of the device shown over the voltmeter in measurements of emf is that it does NOT draw from the cell or battery under test | electric
current | current | | еЕхат | | FBQ | The figure shown is the circuit diagram of a | potentiometer | potentiometer | | еЕхат | | FBQ | In the construction of an ammeter, a low resistance called resistance is connected in parallel to a suitable galvanometer | shunt | shunt | | eExam | | FBQ | The same electric flows through resistors connected in series | current | current | | eExam | | FBQ | A device known as may be used for comparison of resistances | Wheatstone bridge | metre bridge | | eExam | | FBQ | A device which may be used to compare the potential differences of electric cells is | potentiometer | potentiometer | | еЕхат | | FBQ | The equivalent resistance of a \$2 \Omega\$ and a \$3\Omega\$ resistances in parallel is \$\Omega\$ | 6/5 | 1.2 | | еЕхат | | FBQ | The term "lost volts" is used to describe the energy dissipated in the of a source of electromotive force | internal
resistance | internal
resistance | | eExam | | FBQ | Resistances in parallel have the same | potential
difference | voltage | | eExam | | | | | | | | | FBQ | is defined as the time rate of flow of charge across a unit cross-sectional area of a conductor | electric
current | Electric
current | | eExam | |-----|---|---------------------------|---------------------------|--|-------| | FBQ | The ratio V/I = (The symbols have their usual meaning | R | R | | eExam | | FBQ | Beyond the critical angle a ray of light moving from dense to rare medium suffers | total internal reflection | total internal reflection | | eExam | | FBQ | The bending of a ray of light as it travels from one transparent medium to another is called | refraction | refraction | | еЕхат | | FBQ | For the refraction through the triangular glass prism, \$\$(d-e)^{0}\$\$ was plotted on the vertical axis against \$\$i^{0}\$\$ on the horizontal axis according to the equation d-e = i-A and the symbols have their usual meaning. The graph obtained is a straight line and the intercept on the i-axis is | A | A | | еЕхат | | FBQ | A lens which is thinnner at centre than at the edge is a | diverging | concave | | eExam | | FBQ | When an object is placed in front of a convex lens L between F' and 2F', a and inverted image is formed | real | real | | eExam | | FBQ | For concave mirrors, the object distance is always (Choose from: positve, negative) | positive | positve | | eExam | | FBQ | The image of an object placed between the focal point and the pole of a concave mirror is behind the mirror, erect, enlarged and | virtual | virtual | | eExam | | FBQ | Given the radius of curvature R of a spherical mirror, the miiror equation can be written in terms of the object distance u and image distance v as \$\$\frac{1}{u}+\frac{1}{v}=\frac{x}{R}\$\$. X is | 2 | 2 | | еЕхат | | | | | | | | | FBQ | In an experiment, based on the equation \$\$\mu=\frac{\sini}{\sinr}\$\$, sini was plotted on the vertical axis and sinr on the horizontal axis. Then, \$\$\mu\$\$ is the of the graph. | slope | gradient | | еЕхат | |-----|---|---------------------|------------------------|--|-------| | FBQ | The equation \$\$\mu=\frac{\sini}{\sinr}\\$\$, where the symbols have their usual meaning is called _'s law | Snell | Snell | | eExam | | FBQ | In the equation \$\$\mu=\frac{\sini}{\sinr}\$\$, where I and r are the angles of incidence and refraction respectively, \$\$\mu\$\$ is called the | refractive
index | index of
refraction | | еЕхат | | FBQ | The bending of a ray of lightas passes from one medium to another is called | refraction | refraction | | eExam | | FBQ | A type of rechargable cell in common use for electrical experiments in the laboratory, which can supply relatively constant voltage and current for a relatively longer period of time is called | accumulator | accumulator | | | | FBQ | A student designed a circuit which consisted of two variable resistors P and Q, two cells E1 and E2 of negligible internal resistance and a galvanometer. He connected E1 across the series combination of P and Q and then connects the series combination of the cell E2 and the galvanometer across P. He adjusted the variable resistances to obtain a null condition of the galvanometer. The ratio of the emf of E2 to that of E1 is (You may choose your answer from the list: P/Q, (P+Q)/Q, P/(P+Q), Q/(P+Q) | P/(P+Q) | P/(P+Q) | | | | FBQ | In the absence of a slider contact a clip may be used in experiments involving the use of metre bridge | crocodile | crocodile | | | | | | | | | | | FBQ | In an experiment to determine the internal resistance r of a dry cell using the potentiometer, the resistance box was used to provide different values of the external resistance R in the circuit. A graph of 1/R against was plotted to obtain a straight line of the form y = mx + c, where m = 11/12, 11 and 12 being the balance lengths for open and closed circuits respectively. The intercept on the horizontal axis when 1/R = 0 is used to find the internal resistance fo the cell | 1/r | 1/r | | | |-----|---|-----------------------|-----------------------|--|--| | FBQ | In an experiment involving two resistances in series, the slope of the graph of V against I represents | equivalent resistance | equivalent resistance | | | | FBQ | For a metallic conductor, Ohm's law holds provided | temperature | temperature | | | | FBQ | When plotting straight line graphs of experimental data, the line is referred to as line of | bestfit | bestfit | | | | FBQ | An electrical source with internal resistance r is used to operate a lamp of resistance R. The fraction of the total power delivered to the lamp is You may choose your answer from: (r+R)/R, (r+R)/r, R/(r+R), R/r | R/(r+R) | R/(r+R) | | | | FBQ | Another means of introducing variable resistance into a ciruit instead of resistance wire is to use box | resistance | resistance | | | | FBQ | A 3V- battery with internal resistance of 0.5\$\Omega\$ is connected across a parallel combination of a 1-\\$\Omega\$ and 2-\$\Omega\$ resistances. The current in the 2-\$\Omega\$ resistance is A to 2 decimal places | 0.91 | 0.91 | | | | FBQ | In an experiment, \$\frac{1}{V}\$ is plotted against \$\frac{1}{I}\$. The physical significance of the slope of the graph is | conductance | conductance | | | | | | | | | | | FBQ | A 1 m\$\Omega\$ resistor is to be made from a 1-mm diameter wire of resistivity \$2.8 \times 10^{-8} \Omega{m}\$. The length of the wire to one place of decimal is | 2.8 | 2.8 | | | |-----|--|--------------------|-------------------|--|--| | FBQ | Two resistances of 2 \$\Omega\$ each are connected in parallel and then connected in series to a 1\$\Omega\$ resistance.The equivalent resistance is \$\Omega\$ | 2 | two | | | | FBQ | Kirchoff's loop rule represents conservation of | energy | energy | | | | FBQ | The relation between the current I, through the heated filament and the applied voltage, V, is given by the general form \$\$I = KV^{n}\$\$, where K and n are constants. For the empirical relationship between I and V, a straight line graph is plotted from the relation log I = | n log V + log
K | log K+n log V | | | | FBQ | The slide wire of the figure shown is balanced when the the uniform slide wire AB is divided as shown. The value of the resistance X is \$\$\Omega\$\$ | 2 | two | | | | FBQ | The diagram shown is called a | metre bridge | Wheatstone bridge | | | | FBQ | The device shown is called | Wheatstone bridge | Wheatstone bridge | | | | FBQ | The difference between the emf of a battery and the lost volts when discharging is called potential difference or voltage | terminal | terminal | | | | FBQ | Resistances in series have the same | current | current | | | | FBQ | In the circuit shown, the name of the device which provides silding contact with the resistance wire PQ is called | jockey | jockey | | | | FBQ | A cell such Weston cadmium cell is used in a suitable circuit to determine the emf of unknown cell | standard | standard | | | | FBQ | To change a galvanometer to a voltmeter, connect a high resistance in to it | series | series | | | | |-----|--|-------------------------|---------------|--|--|--| | FBQ | In the circuit shown, the wire PQ is usually made up of a material called | constantan | constantan | | | | | FBQ | In the circuit diagram shown, the device marked X is a | galvanometer | galvanometer | | | | | FBQ | In the circuit diagram shown, the wire PQ has the resistance of \$\$5\Omega\$\$ and the driver cell has an emf of 2.00 V. The value of the resistance R if a balance point is obtained at 0.600 m along PQ when measuring an emf of 6.00mV? is (Leave your answer to the nearest whole number) | 995 | 995 | | | | | FBQ | The null condition in experiments involving the use of the device shown implies that the s are balanced | potential
difference | voltage | | | | | FBQ | The advantage of the device shown over the voltmeter in measurements of emf is that it does NOT draw from the cell or battery under test | electric
current | current | | | | | FBQ | The figure shown is the circuit diagram of a | potentiometer | potentiometer | | | | | FBQ | In the construction of an ammeter, a low resistance called resistance is connected in parallel to a suitable galvanometer | shunt | shunt | | | | | FBQ | The same electric flows through resistors connected in series | current | current | | | | | FBQ | A device known as may be used for comparison of resistances | Wheatstone bridge | metre bridge | | | | | FBQ | A device which may be used to compare the potential differences of electric cells is | potentiometer | potentiometer | | | | | | | | | | | | | FBQ | The equivalent resistance of a \$2 \Omega\$ and a \$3\Omega\$ resistances in parallel is \$\Omega\$ | 6/5 | 1.2 | | | |-----|---|---------------------------|---------------------------|--|--| | FBQ | The term "lost volts" is used to describe the energy dissipated in the of a source of electromotive force | internal
resistance | internal
resistance | | | | FBQ | Resistances in parallel have the same | potential
difference | voltage | | | | FBQ | defined as the time rate of flow of charge across a unit cross-sectional area of a conductor | electric
current | Electric
current | | | | FBQ | The ratio V/I = (The symbols have their usual meaning | R | R | | | | FBQ | Beyond the critical angle a ray of light moving from dense to rare medium suffers | total internal reflection | total internal reflection | | | | FBQ | The bending of a ray of light as it travels from one transparent medium to another is called | refraction | refraction | | | | FBQ | For the refraction through the triangular glass prism, \$\$(d-e)^{0}\$\$ was plotted on the vertical axis against \$\$i^{0}\$\$ on the horizontal axis according to the equation d-e = i-A and the symbols have their usual meaning. The graph obtained is a straight line and the intercept on the i-axis is | A | A | | | | FBQ | A lens which is thinnner at centre than at the edge is a | diverging | concave | | | | FBQ | When an object is placed in front of a convex lens L between F' and 2F', a and inverted image is formed | real | real | | | | FBQ | For concave mirrors, the object distance is always (Choose from: positve, negative) | positive | positve | | | | FBQ | The image of an object placed between the focal point and the pole of a concave mirror is behind the mirror, erect, enlarged and | virtual | virtual | | | | EBC | Civen the radius of sum-time Def | 2 | 2 | | | | | |-----|---|---|--|---|---|---|-------| | FBQ | Given the radius of curvature R of a spherical mirror, the miiror equation can be written in terms of the object distance u and image distance v as \$\$\frac{1}{u}+\frac{1}{v}=\frac{x}{R}\$\$. X is | 2 | 2 | | | | | | FBQ | In an experiment, based on the equation \$\$\mu=\frac{\sini}{\sinr}\$\$, sini was plotted on the vertical axis and sinr on the horizontal axis. Then, \$\$\mu\$\$ is the graph. | slope | gradient | | | | | | FBQ | The equation \$\$\mu=\frac{\sini} {\sinr}\$\$, where the symbols have their usual meaning is called _'s law | Snell | Snell | | | | | | FBQ | In the equation \$\$\mu=\frac{\sini} {\sinr}\$\$, where I and r are the angles of incidence and refraction respectively, \$\$\mu\$\$ is called the | refractive index | index of refraction | | | | | | FBQ | The bending of a ray of lightas passes from one medium to another is called | refraction | refraction | | | | | | мсо | The advantage of potentiometer over voltmetr in measurements of emf is that | the potentiometer wire is assumed to be uniform | it does not
draw current
from the
circuit under
test | the
temperatue
of the wire
must remain
constant | faults may
arise due to
breaks or
wrong
connections
in the circuit | В | eExam | | мсо | Which of these is not a useful precaution in an electrical experiment? | key should
be removed
between
readings to
avoid battery
run-down | jockeys
should be
dragged on
resistance
wires | the connections in the circuit should be tight | readings
should be
recorded as
soon as they
are obtained | В | eExam | | MCQ | Which of the following is NOT true about a rheostat? | It is a constant current instrument | It is a resistor
with moving
contact | It is used for
varying the
current in a
circuit | It is used for
varying the
resistance in
a circuit | Α | eExam | | MCQ | In an experiment, potential difference is plotted on the vertical axis and current on the horizontal axis. The slope of the graph represents | resistivity | conductivity | resistance | conductance | С | eExam | | MCQ | For a metallic conductor, Ohm's law holds provided | potential
difference
varies | current
remains
constant | temperature
remains
constant | potential
difference
remains
constant | С | eExam | | MCQ | The lens of the human eye is | concave | converging | planconcave | diverging | В | eExam | | MCQ | Which of the following precautions is NOT applicable to experiment involving planoconvex lens? | planoconvex
lens should
have small
focal length | parallax error
should be
avoided | the surface of
the lens
should be
cleaned
properly | the tip of the optical pin should be at the same level with the principal axis of the lens | A | еЕхат | |-----|---|---|---|--|--|---|-------| | MCQ | A glass prism of refracting angle 60 degrees gives a minimum deviation of 47degrees. What is the refractive index of the glass? | 1.61 | 1.20 | 1.52 | 1.41 | A | eExam | | MCQ | Calculate the distance and magnification of an object placed 20cm from a converging lens | 60cm and 0.3 times the size of object | 20cm and 0.3
times the size
of object | 60cm and 3 times the size of object | 80cm and 3
times the size
of object | D | eExam | | MCQ | diopter measures | linear
magnification
of lens | power of lens | inverse of
object
distance from
lens | inverse of image distnce from lens | С | eExam | | MCQ | Which of the following is not true about diverging lens | the principal
focus is
positive | the principal
focus is
ngative | they poduce
virtual
images only | they form
virtual, erect
and smaller
images of
real object | В | eExam | | MCQ | In an experiment to determine the focal length of a convex lens, 1/u \$(cm^{-1})\$ was plotted on horizontal and 1/v \$(cm^{-1})\$ on the vertical axis, where u and v have their usual meaning. What is the physical significance of the reciprocal of the intercept on the horizontal axis? | linear
magnification | focal length | object
distance | image
distance | С | eExam | | MCQ | In an experiment to determine the focal length of a convex lens, 1/u \$(cm^{-1})\$ was plotted on horizontal and 1/v \$(cm^{-1})\$ on the vertical axis, where u and v have their usual meaning. What is the physical significance of the reciprocal of the slope of the graph? | linear
magnification | focal length | object
distance | image
distance | A | eExam | | MCQ | In practical experiment inloving the use of optical pins, parallax is reduced or removed if on slightly displacing one's eye from side to side | the object
and image
are not
coincident
but move
together in
same
directions | the object
and image
move in
opposite
directions
relative to
each other | the object
and image
are
coincident
and move
together in
the same
direction | the object
and image
are
coincident
and remain
stationary | С | eExam | | MCQ | In an experiment with a concave mirror, the image of an optical pin which is 4 times its size was cast on on a screen 6m from the object pin. How far from the object pin should the mirror be placed? | 8m | 6m | 3m | 2m | D | еЕхат | | MCQ | The image of an object which is between the concave mirror's reflecting surface and its principal focus is | in front of the
mirror erect
real and
diminished | behind the
mirror
inverted real
and
diminished | in front of the
mirror erect
virtual and
enlarged | behind the
mirror erect
virtual and
enlarged | D | eExam | |-----|---|--|--|--|--|---|-------| | MCQ | The bending of a ray of light as it travels from one transparent medium to another is called | reflection | polarisation | refraction | diffraction | С | eExam | | MCQ | In the construction of an ammeter, a low resistance called resistance is connected in parallel to a suitable galvanometer | multiplier | shunt | milliammeter | galvanometer | В | eExam | | MCQ | The unit of electrical energy expended per unit time is calledd | joule | ampre | volt | watt | D | eExam | | MCQ | The name of the device which provides sliding contact with the potentiometer wire is called | jockey | rheostat | galvanometer | meter bridge | А | eExam | | MCQ | The difference between the emf of a battery and the lost volts when discharging is called | electromotive
force | terminal
voltage | internal
resistance | lost power | В | eExam | | MCQ | A device known as may be used for comparison of resistances | Wheatstone bridge | potentiometer | voltmeter | rheostat | Α | eExam | | MCQ | A device which may be used to compare the potential differences of electric cells is called | metre bridge | wheatstone
bridge | rheostat | potentiometer | D | eExam | | MCQ | The term "lost volts" is used to describe of a cell | electromotive
force | terminal
potential
difference | energy
dissipated in
the internal
resistance | total current | С | eExam | | MCQ | The time rate of flow of charge across a unit cross-sectional area of a conductor defines | potential
differenc | electromotive
force | electrical
resistance | electric
cirrent | D | eExam | | MCQ | A 1 m\$\Omega\$ resistor is to be made from a 1-mm diameter wire of resistivity \$2.8\time10{-8}.Find the length of the wire | 4.2cm | 3.6cm | 2.8cm | 1.4cm | С | eExam | | MCQ | Which of the following is correct? | Kirchoff's
junction rule
reprecents
conservation
of momentum | Kirchoff's
loop rule
represents
conservation
of charge | Kirchoff's
loop rule
represents
conservation
of energy | Kirchoff's
junction rule
represents
conservation
of energy | С | eExam | | MCQ | Two resistances of \$2\Omega\$ each are connected in parallel and then connected in series to a \$1\Omega\$ resistance. What is the equivalent resistance | 1\$\Omega\$ | 2\$\Omega\$ | 3\$\Omega\$ | 4\$\Omega\$ | В | eExam | | MCQ | A slide-wire potentiometer is balanced against 1.0182V standard cell at slide contact of 40.2cm. For an unknown emf the slide contact is 11.9cm.What is the emf of the unknown cell? | 1.24V | 0.24V | 1.53V | 0.30V | D | еЕхат | |-----|--|---|---|---|---|---|-------| | MCQ | The null condition in potentiometer experiment shows that | the potential
difference
under test is
zero | current is varying in the circuit | current is increasing in the circuit | potential
differences
are balanced | D | eExam | | MCQ | Which of the following is NOT correct about the experiment shown? | R1 and R2
are inseries | the same
current flows
through R1
and R2 | the potential
difference
across R1
and R2 is the
same | the equivalent resistance of R1 and R2 is the sum of the two resistances | С | eExam | | MCQ | The advantage of potentiometer over voltmeter in measurements of emf is that | the potentiometer wire is assumed to be uniform | it does not
draw current
from the
circuit under
test | the
temperature
of the wire
must remain
constant | faults may
arise due to
breaks or
wrong
connections
in the circuit | В | eExam | | MCQ | Which of these is not a useful precaution in an electrical experiment? | key should
be removed
between
readings to
avoid battery
run-down | jockeys can
be dragged
or pressed
sufficiently
hard on
resistance
wires | the
connections
in the circuit
should be
tight | readings
should be
recorded as
soon as they
are obtained | В | eExam | | MCQ | Which of the following is not true about a rheostat? | It is a constant current instrument | It is a variable resistor with moving contact | It is used for
varying the
current in a
circuit | It is used for
varying the
resistance in
a circuit | A | еЕхат | | MCQ | In an experiment, potential difference is plotted on the ordinate (vertical axis) and current on the abscissa(horizontal axis). The slope of the graph represents | potential
difference | current
remains
constant | resistance | resistivity | С | еЕхат | | MCQ | In an experiment to determine the refractive index of glass using the triangular glass prism, the difference between the angle of deviation and the angle of emergence \$\$(d-e)^{0}\$\$ was plotted on the vertical axis against the angle of incidence \$\$i^{0}\$\$ on the horizontal axis. From which of the following can the value of the angle of the prism, A be found from the graph? | slope of
graph | inverse of the
slope of grap | intercepts on
either axes | inverse of the
intercept on
either of the
axes | С | eExam | | MCQ | In an experiment to determine the refractive index of glass using the triangular glass prism, the difference between the angle of deviation and the angle of emergence \$\$(d-e)^{0}\$\$ was plotted on the vertical axis against the angle of incidence \$\$i^{0}\$\$ on the horizontal axis. Which of the following correctly gives the sketch of the graph? | I | II | III | IV | D | eExam | |-----|--|--|--|---|---|---|-------| | MCQ | In an experiment to determine the focal length of a convex lens using an optical bench, a graph of was plotted with the values of 1/v on the vertical ais and 1/u on the horizontal axis. Which of the following correctly gives the power of the lens? | slope of the grah | inverse of the
slope of the
graph | intercept on
either of the
axes | inverse of the
intercept on
either of the
axes | С | eExam | | MCQ | Describe the image of candle positioned 20 cm in front of a concave mirror of focal length 3 0cm | virtual,
inverted,
12cm behind
mirror and
magnified 3
times | real, inverted,
12cm in front
of mirror and
diminished 3
times | virtua,I erect,
60cm behind
mirror and
magnified 3
time | real, erect,
60cm in front
of mirror and
diminished 3
times | С | eExam | | MCQ | In an experiment to determine the focal length of a convex lens using an optical bench, the object pin was placed in front of the lens between F' and 2F'. Describe the image of the the pin as seen on the other side of the lens. | real and inverted | real and
upright | virtual and
erect | virtual and
upright | A | еЕхат | | MCQ | In an experiment to demonstrate how the object and images distances vary for a convex mirror, a graph with 1/u on the ordinate and 1/v on the abscissa was plotted. Which of the following figures correctly gives the shape of the graph? | I | II | III | IV | В | eExam | | MCQ | In an experiment involving a spherical mirror, 1/v was plotted on the vertical axis and 1/u on the horizontal axis. What is the linear magnification? | slope of the graph | inverse of the
the slope of
the graph | intercept on
the vertical
axis | intercept on
the horizontal
axis | В | eExam | | MCQ | Which of the following is NOT true of experiments involving curved mirrors? | image
distance is
negative for
for real image | object
distance is
positive | image
distance is
negative for
virtual image | focal length is
negative for
convex
mirrors | A | eExam | | MCQ | In an expreiment, derived values such as those obtained from four figure tables should be recorded to at least decimal places | 2 | 3 | 5 | 7 | В | eExam | | MCQ | Which of the following is NOT applicable when plotting the graph of experimntal data? | Lines of
bestfit should
always be
used to
connect the
plotted points | circled dots
or crosses
may be used
to show
plotted points | thin, sharp
and
continuous
lines are
acceptable | the scale
must be
chosen to
make the
graph occupy
as small as
possible of
the graph
page | D | eExam | |-----|--|---|--|---|---|---|-------| | MCQ | An estimate of the refractive index of glass is 1.5. If the angle of incidence is \$\$30^{o}\$\$ the angle of refraction is | \$\$19^{o}\$\$ | \$\$60^{o}\$\$ | \$\$35^{o}\$\$ | \$\$70^{o}\$\$ | A | eExam | | MCQ | The critical angle for total internal reflection at an air- water interface is approximately \$\$48^{0}\$\$. In which of the following situations will total internal reflection occur. | light incident
in water at
\$\$440^{o}\$\$ | light incident
in water at
\$55^{o}\$\$ | light incident
in air at
\$\$40^{o}\$\$ | light incident
in air at
\$\$55^{o}\$\$ | В | eExam | | MCQ | In experimental observations involving rectangular glass blocks, | the angle of
incidence is
less than the
angle of
refraction in
general | the angle of
incidence is
equal to the
angle of
refraction | the angle of incidence is greater than the angle refraction when light is moving out of the block | the angle of
refraction is
less than the
angle of
incidence
when light is
entering the
block | D | еЕхат | | MCQ | Which of the following is NOT a precaution in optical experiments that involve glass blocks? | sharp, thin
lines should
be drawn to
represent the
rays | The glass
block must
be properly
replaced on
the traced
outline | Optical pins
must cluster
together | Optical pins
must be kept
erect | С | eExam | | MCQ | In an optical experiment to determine the refractive index of a glass block, a student plotted the values of the sines of the angles of incidence, \$\$sini\$\$ on the vertical axis and the values of the sines of the angles of refraction, \$\$sinr\$\$ on the horizontal axis of his graph. Which of the following correctly gives the refractive index of the glass block from Snell's law using his graph? | intercept on
the horizontal
axis | intercept on
the vertical
axis | inverse of the
slope of the
graph | slope of the graph | D | eExam | Previous 1 2 Next