✓ eExam Question Bank							
Coursecode:							
Choose Coursecode	•						
ᆒDelete Selected Questions	► Assign Selected Questions to eExam						
Show 150 ▼ entries							
	Search:						

Question Type J	Question	A J1	в Џ	c Jt	D 11	Answer 11	Remark 11
FBQ	A vector is completely defined by quantities , each with its appropriate units	2	two				eExam
FBQ	$\frac{\partial H}{\partial p_k}=\dot{q_k}$, $\frac{\partial H}{\partial q_k}=-\dot{p_k}$ and $\frac{\partial H}{\partial t}=-\frac{\partial L}{\partial t}$ are known as the equations of Hamilton	canonical	canonical				eExam
FBQ	The equation $H = \sum_{k=1}^n p_k \dot{q}_k - L\left(q_k, \dot{q}_k, t\right)$ gives the classical Hamiltonian function for a system of particles, each of mass m_k and described by the generalized coordinates q_k . For a system of particles in a coservative field, the Hamiltonian function given represents of the system	total energy	total energy				еЕхат
FBQ	$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_k}\right) = \frac{\partial L}{\partial q_k}$ represent the	Lagrange	Euler- Lagrange				еЕхат

FBQ	In the application of the variational principle to a physical system, the quantity $L \\ $	Lagrangian	Lagrangian function		eExam
FBQ	Given the $Q_k = F_i \frac{\partial x_i}{\partial q_k} \label{eq:Qk}$, Q_k represents	generalized force	generalised force		eExam
FBQ	$p_k = \frac{\partial T}{\partial \dot{q_k}}$ represents momnentum	generalised	generalized		еЕхат
FBQ	Restrictions imposed on the free motion of a particle (or a system of particles) are generally called	constraints	contraint		eExam
FBQ	The degree of is important in the design of a good suspension system of a car to ensure comfortable ride.	damping	damping		eExam
FBQ	In a series LC circuit, the quanity $\frac{1}{LC}$ is equal to the square of the $\frac{1}{LC}$ (where L and C are the inductance and capacitance respectively)	angular velocity	angular frequency		eExam
FBQ	The equation of a simple pendulum is given as \$\$m\ddot{x}+mg\frac{x}{I}=0\$\$. The quantity \$\$\frac{g}{I}\$\$ is equal to the of the	angular velocity	angular frequency		eExam
FBQ	If the displacement of a simple harmonic oscillator as a function of time I given as \$\$x=Acos\left (\omega{t}+\phi \right)\$\$, the quantity \$\$phi\$\$ is called the constant	phase	phase		eExam
FBQ	\$\$\triangledown\times\left (\triangledown\phi \right)\$\$= . Note \$\$\phi \$\$ is the potential in a conservative force field.	0	zero		eExam

FBQ	for small displacements from equilibrium position, the restoring force of a simple harmonic oscillator obeys	Hooke's	Hooke's		eExam
FBQ	(1) The paths of planets about the sun are elliptical in shape, with the center of the sun being located at one focus. (2) An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (3) The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. The three statements constitute what is known as	Kepler	Kepler		eExam
FBQ	The motion of a particle in a central force field always takes place in a	plane	plane		eExam
FBQ	In the equation \$\$\vec{N}=\vec{r}\times{\vec{F}}\$\$, \$\$\vec{N}\$\$ represents	torque	moment		eExam
FBQ	For a particle moving under the central conservative force, the equation \$\$\frac{1} {2}\\dot{r}^{2}+\frac{L^{2}}{2mr^{2}}+V\left (r \right) = E\$\$ is called the energy equation	radial	radial		eExam
FBQ	In the equation \$\$\vec{L}=\vec{r}\times{\vec{p}}\$\$, \$\$L\$\$ represents	angular momentum	angular momentum		eExam
FBQ	The equations $\$ \equations	velocities	velocities		eExam
FBQ	If a system of particles is described by a set of generalised coordinates \$\$q_{1},,q_{3N}\$\$, then \$\$\dot{q_{k}}\$\$ for \$\$k=1,2,,3N\$\$ is called the generalized associated with the coordinates	velocity	velocity		eExam
FBQ	The generalised force associted with angular quantities is a	torque	moment		eExam
FBQ	A particle that moves along a straight line has degree of freedom	1	one		eExam
FBQ	Constraints that can be representd as functions of space and time are said to be	holonomic	holonomic		eExam

FBQ	The mathematical term used for descibing the circulation of a vector is the	curl	curl		eExam
FBQ	If \$\$\vec{a}\times\vec{b}=0\$\$, then, \$\$\vec{a}\$\$ and \$\$\vec{b}\$\$ are	parallel	parallel		eExam
FBQ	The measure of the outward flow of the vector from its source is the of the vector	divergence	divergence		eExam
FBQ	The dot or scalar product of a force and a displacement vectors defines	work	work		eExam
FBQ	A force which acts on a particle in such a way that there is interconversion between kinetic and potential energies is said to be	conservative	conservative		eExam
FBQ	If the addition of vector by geometric method gives a close figure, the the resultant of the vectors is	0	zero		eExam
FBQ	If \$\$\vec{F}\$\$ is a force and \$\$\vec{r}\$\$ the radius vector from the origin of the position of a particle acted upon the force, then \$\$\vec{F}\times\vec{r}\$\$ represents the of the force about the origin	moment	torque		eExam
FBQ	The gradient of a scalar field fuction is a quantity	vector	vector		eExam
FBQ	If the curl of a vector is zero, then the vector is said to be	irrotational	irrotational		eExam
FBQ	Undisturbed orbital motion under the influence of a central force satisfies 's law of areas	Kepler	Kepler		eExam
FBQ	The term \$\$r\dot{{\theta}^{2}}\$\$ in the expression \$\$\ddot{r}{-}r\dot{{\theta}^{2}} represents acceleration	centripetal	radial		eExam
FBQ	The aspect of mechanics that describes the motion of particles without that regard to the dynamical laws that determine which motion actually occurs is referred to as	kinematics	kinematics		eExam
FBQ	If \$\$\oint F\left (\vec{r} \right)\cdot{d}\vec{r}=0\$\$, then \$\$\vec{F}\$\$ is a force	conservative	conservative		eExam

FBQ	The statement \$\$T+V=E(constant)\$\$, where T is the kinetic energy and V the potential energy is known as the theorem	work-energy	work-energy	eExam
FBQ	If \$\$\triangledown\times\vec{F}=0\$\$, then \$\$\vec{F}\$\$ is	conservative	conservative	eExam
FBQ	If the work done in moving a particle from place to place in a force field is independent of the path followed by the particle, then the force field is said to be	conservative	hshsshsh	eExam
FBQ	A damped oscillation driven by external periodic impulses whose frequecy is the same as the natural frequency of the oscillator	resonates	hshsshsh	eExam
FBQ	If the resistance to a simple harmonic oscillation is very strong, the motion is said to be heavily	damped	hshsshsh	eExam
FBQ	In reality, the amplitude of a simple harmonic oscillator gradually decreases in the presence of dissipative forces. Such motion is said to be	damped	hshsshsh	eExam
FBQ	In an LC circuit, the quantity \$\$\frac{1} {\sqrt{LC}}\$\$ represents	angular frequency	hshsshsh	eExam
FBQ	The displacement of a simple harmonic oscillator is given as \$\$x=Acos\left(\omega{t} {+}\phi\right)\$\$. The quantity \$\$\left(\omega{t} {+}\phi\right)\$\$ is the of the oscillation. (symbols have their usual meaning)	phase	phase angle	еЕхат
FBQ	The term mormal mode frequency is associated with oscillation	coupled	coupled	eExam
FBQ	The inertial factor in the spring mass system is \$\$m\$\$. The inertial factor in the LC circiut is	1/C	1/C	eExam
FBQ	Any motion that repeats itself at a regular intervals of time is said to be	priodic	periodic	eExam
FBQ	The equation \$\$\left(\frac{du}{d\theta}\right)^{2}+U^{2}=\frac{2m}{L^{2}}\left(E-V\right)\$\$ is the statement of conservation of	energy	energy	eExam
FBQ	For an oscillating system, if the restoring force obeys Hooke's law for small displacement from equilibrium position, the the motion is	simple harmonic	simple harmonic	eExam

FBQ	A vector is completely defined by quantities , each with its appropriate units	2	two	
FBQ	$ $ \frac{p_{k}}= d_{q_{k}}$, $$ \frac{H}{ \operatorname{[Q_{k}]}}= d_{q_{k}}$, $$ \frac{q_{k}}$ and $$ \operatorname{[P_{k}]}$ are known as the equations of Hamilton $$ \frac{p_{k}}$ and $$ \frac{L}{ \operatorname{[P_{k}]}}$ are $$ \operatorname{[P_{k}]}$ are $$ \operatorname{[P_{k}]}$ and $$ \operatorname{[P_{k}]}$ are $$ \operatorname{[P_{k}]}$ and $$ \operatorname{[P_{k}]}$ are $$ \operatorname{[P_{k}]}$ and $$ [P_{$	canonical	canonical	
FBQ	The equation \$\$H=\sum_{k=1}^{n}p_{k}\dot{q}_{k}{-}L\left (q_{k},\dot{q}_{k},t \right)\$\$ gives the classical Hamiltonian function for a system of particles, each of mass \$\$m_{k}\$\$ and described by the generalized coordinates \$\$q_{k}\$\$. For a system of particles in a coservative field, theHamiltonian function given represents of the system	total energy	total energy	
FBQ	\$\$ \frac{d}{dt}\left (\frac{\partial {L}}{\partial {L}}{\partial {\dot{q_{k}}}} \right) = \frac{\partial L}{\partial q_{k}}\$\$ represent the's equations of motion for a conservative system subject to, at worst, only holonomic constraints	Lagrange	Euler- Lagrange	
FBQ	In the application of the variational principle to a physical system, the quantity \$\$L\$\$ in the equation \$\$L=T-V\$\$ is called the	Lagrangian	Lagrangian function	
FBQ	Given the $\Q_{k}=F_{i}\$ represents $\ \{(q_{k})\}\$	generalized force	generalised force	
FBQ	\$\$ p_{k}=\frac{\partial T}{\partial {\dot{q_{k}}}}\$\$ represents momnentum	generalised	generalized	
FBQ	Restrictions imposed on the free motion of a particle (or a system of particles) are generally called	constraints	contraint	
FBQ	The degree of is important in the design of a good suspension system of a car to ensure comfortable ride.	damping	damping	
FBQ	In a series LC circuit, the quanity \$\$\frac{1}{LC}\$\$ is equal to the square of the (where L and C are the inductance and capacitance respectively)	angular velocity	angular frequency	
FBQ	The equation of a simple pendulum is given as \$\$m\ddot{x}+mg\frac{x}{I}=0\$\$. The quantity \$\$\frac{g}{I}\$\$ is equal to the of the	angular velocity	angular frequency	

FBQ	If the displacement of a simple harmonic oscillator as a function of time I given as \$\$x=Acos\left (\omega{t}+\phi \right)\$\$, the quantity \$\$phi\$\$ is called the constant	phase	phase	
FBQ	\$\$\triangledown\times\left (\triangledown\phi \right)\$\$= . Note \$\$\phi \$\$ is the potential in a conservative force field.	0	zero	
FBQ	for small displacements from equilibrium position, the restoring force of a simple harmonic oscillator obeys	Hooke's	Hooke's	
FBQ	(1) The paths of planets about the sun are elliptical in shape, with the center of the sun being located at one focus. (2) An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (3) The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. The three statements constitute what is known as	Kepler	Kepler	
FBQ	The motion of a particle in a central force field always takes place in a	plane	plane	
FBQ	In the equation \$\$\vec{N}=\vec{r}\times{\vec{F}}\$\$, \$\$\vec{N}\$\$ represents	torque	moment	
FBQ	For a particle moving under the central conservative force, the equation \$\$\frac{1} {2}\dot{r}^{2}+\frac{L^{2}}{2mr^{2}}+V\cdot (r \right) =E\$\$ is called the energy equation	radial	radial	
FBQ	In the equation \$\$\vec{L}=\vec{r}\times{\vec{p}}\$\$, \$\$L\$\$ represents	angular momentum	angular momentum	
FBQ	The equations $\$ \equations	velocities	velocities	
FBQ	If a system of particles is described by a set of generalised coordinates \$\$q_{1},,q_{3N}\$\$, then \$\$\dot{q_{k}}\$\$ for \$\$k=1,2,,3N\$\$ is called the generalized associated with the coordinates	velocity	velocity	

FBQ	The generalised force associted with angular quantities is a	torque	moment	
FBQ	A particle that moves along a straight line has degree of freedom	1	one	
FBQ	Constraints that can be representd as functions of space and time are said to be	holonomic	holonomic	
FBQ	The mathematical term used for descibing the circulation of a vector is the	curl	curl	
FBQ	If \$\$\vec{a}\times\vec{b}=0\$\$, then, \$\$\vec{a}\$\$ and \$\$\vec{b}\$\$ are	parallel	parallel	
FBQ	The measure of the outward flow of the vector from its source is the of the vector	divergence	divergence	
FBQ	The dot or scalar product of a force and a displacement vectors defines	work	work	
FBQ	A force which acts on a particle in such a way that there is interconversion between kinetic and potential energies is said to be	conservative	conservative	
FBQ	If the addition of vector by geometric method gives a close figure, the the resultant of the vectors is	0	zero	
FBQ	If \$\$\vec{F}\$\$ is a force and \$\$\vec{r}\$\$ the radius vector from the origin of the position of a particle acted upon the force, then \$\$\vec{F}\times\vec{r}\$\$ represents the of the force about the origin	moment	torque	
FBQ	The gradient of a scalar field fuction is a quantity	vector	vector	
FBQ	If the curl of a vector is zero, then the vector is said to be	irrotational	irrotational	
FBQ	Undisturbed orbital motion under the influence of a central force satisfies's law of areas	Kepler	Kepler	
FBQ	The term \$\$r\dot{{\theta}^{2}}\$\$ in the expression \$\$\ddot{r}{-}r\dot{{\theta}^{2}} represents acceleration	centripetal	radial	

FBQ	The aspect of mechanics that describes the motion of particles without that regard to the dynamical laws that determine which motion actually occurs is referred to as	kinematics	kinematics		
FBQ	$\label{limit} \begin{tabular}{ll} $$ \left(\left(\left(\right) \right) \cdot{d}\left(\right) \cdot{d}\right), $$ then $$\cdot{F}$$ is a force $$ \cdot{d} \cdo$	conservative	conservative		
FBQ	The statement \$\$T+V=E(constant)\$\$, where T is the kinetic energy and V the potential energy is known as the theorem	work-energy	work-energy		
FBQ	If \$\$\triangledown\times\vec{F}=0\$\$, then \$\$\vec{F}\$\$ is	conservative	conservative		
FBQ	If the work done in moving a particle from place to place in a force field is independent of the path followed by the particle, then the force field is said to be	conservative	hshsshsh		
FBQ	A damped oscillation driven by external periodic impulses whose frequecy is the same as the natural frequency of the oscillator	resonates	hshsshsh		
FBQ	If the resistance to a simple harmonic oscillation is very strong, the motion is said to be heavily	damped	hshsshsh		
FBQ	In reality, the amplitude of a simple harmonic oscillator gradually decreases in the presence of dissipative forces. Such motion is said to be	damped	hshsshsh		
FBQ	In an LC circuit, the quantity \$\$\frac{1} {\sqrt{LC}}\$\$ represents	angular frequency	hshsshsh		
FBQ	The displacement of a simple harmonic oscillator is given as \$\$x=Acos\left(\omega{t} {+}\phi\right)\$\$. The quantity \$\$\left(\omega{t} {+}\phi\right)\$\$ is the of the oscillation. (symbols have their usual meaning)	phase	phase angle		
FBQ	The term mormal mode frequency is associated with oscillation	coupled	coupled		
FBQ	The inertial factor in the spring mass system is \$\$m\$\$. The inertial factor in the LC circiut is	1/C	1/C		
FBQ	Any motion that repeats itself at a regular intervals of time is said to be	priodic	periodic		

FBQ	The equation \$\$\left(\frac{du}{d\theta}\right)^{2}+U^{2}=\frac{2m}{L^{2}}\left(E-V\right)\$\$ is the statement of conservation of	energy	energy	
FBQ	For an oscillating system, if the restoring force obeys Hooke's law for small displacement from equilibrium position, the the motion is	simple harmonic	simple harmonic	
FBQ	A vector is completely defined by quantities , each with its appropriate units	2	two	
FBQ	$ $ \frac{p_{k}}{\operatorname{Q_{k}}} $ \ H_{k} \operatorname{Q_{k}} $ \ H_{k} \ _{p_{k}} = \ H_{k} \ _{p_{k}} $ \ $	canonical	canonical	
FBQ	The equation \$\$H=\sum_{k=1}^{n}p_{k}\dot{q}_{k}{-}L\left (q_{k},\dot{q}_{k},t \right)\$\$ gives the classical Hamiltonian function for a system of particles, each of mass \$\$m_{k}\$\$ and described by the generalized coordinates \$\$q_{k}\$\$. For a system of particles in a coservative field, theHamiltonian function given represents of the system	total energy	total energy	
FBQ	\$\$ \frac{d}{dt}\left (\frac{\partial {L}}{\partial {L}}{\partial {L}}}\partial {\dot{q_{k}}}} \right) = \frac{\partial L}{\partial q_{k}}\$\$ represent the's equations of motion for a conservative system subject to, at worst, only holonomic constraints	Lagrange	Euler- Lagrange	
FBQ	In the application of the variational principle to a physical system, the quantity \$\$L\$\$ in the equation \$\$L=T-V\$\$ is called the	Lagrangian	Lagrangian function	
FBQ	Given the \$\$Q_{k}=F_{i}\frac{\partial x_{i}}{\partial \{(q_{k}})}\$\$, \$\$Q_{k}\$\$ represents	generalized force	generalised force	
FBQ	\$\$ p_{k}=\frac{\partial T}{\partial {\dot{q_{k}}}}\$\$ represents momnentum	generalised	generalized	
FBQ	Restrictions imposed on the free motion of a particle (or a system of particles) are generally called	constraints	contraint	
FBQ	The degree of is is important in the design of a good suspension system of a car to ensure comfortable ride.	damping	damping	

FBQ	In a series LC circuit, the quanity \$\$\frac{1}{LC}\$\$ is equal to the square of the (where L and C are the inductance and capacitance respectively)	angular velocity	angular frequency		
FBQ	The equation of a simple pendulum is given as \$\$m\ddot{x}+mg\frac{x}{I}=0\$\$. The quantity \$\$\frac{g}{I}\$\$ is equal to the of the	angular velocity	angular frequency		
FBQ	If the displacement of a simple harmonic oscillator as a function of time I given as \$\$x=Acos\left (\omega{t}+\phi \right)\$\$, the quantity \$\$phi\$\$ is called the constant	phase	phase		
FBQ	\$\$\triangledown\times\left (\triangledown\phi \right)\$\$= . Note \$\$\phi \$\$ is the potential in a conservative force field.	0	zero		
FBQ	for small displacements from equilibrium position, the restoring force of a simple harmonic oscillator obeys	Hooke's	Hooke's		
FBQ	(1) The paths of planets about the sun are elliptical in shape, with the center of the sun being located at one focus. (2) An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (3) The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. The three statements constitute what is known as	Kepler	Kepler		
FBQ	The motion of a particle in a central force field always takes place in a	plane	plane		
FBQ	In the equation \$\$\vec{N}=\vec{r}\times{\vec{F}}\$\$, \$\$\vec{N}\$\$ represents	torque	moment		
FBQ	For a particle moving under the central conservative force, the equation \$\$\frac{1} {2}\\dot{r}^{2}+\frac{L^{2}}{2mr^{2}}+V\left (r \right) = E\$\$ is called the energy equation	radial	radial		
FBQ	In the equation \$\$\vec{L}=\vec{r}\times{\vec{p}}\$\$, \$\$L\$\$ represents	angular momentum	angular momentum		
			ı		

FBQ	The equations $\$ \equations	velocities	velocities		
FBQ	If a system of particles is described by a set of generalised coordinates \$\$q_{1},,q_{3N}\$\$, then \$\$\dot{q_{k}}\$\$ for \$\$k=1,2,,3N\$\$ is called the generalized associated with the coordinates	velocity	velocity		
FBQ	The generalised force associted with angular quantities is a	torque	moment		
FBQ	A particle that moves along a straight line has degree of freedom	1	one		
FBQ	Constraints that can be representd as functions of space and time are said to be	holonomic	holonomic		
FBQ	The mathematical term used for descibing the circulation of a vector is the	curl	curl		
FBQ	If \$\$\vec{a}\times\vec{b}=0\$\$, then, \$\$\vec{a}\$\$ and \$\$\vec{b}\$\$ are	parallel	parallel		
FBQ	The measure of the outward flow of the vector from its source is the of the vector	divergence	divergence		
FBQ	The dot or scalar product of a force and a displacement vectors defines	work	work		
FBQ	A force which acts on a particle in such a way that there is interconversion between kinetic and potential energies is said to be	conservative	conservative		
FBQ	If the addition of vector by geometric method gives a close figure, the the resultant of the vectors is	0	zero		
FBQ	If \$\$\vec{F}\$\$ is a force and \$\$\vec{r}\$\$ the radius vector from the origin of the position of a particle acted upon the force, then \$\$\vec{F}\times\vec{r}\$\$ represents the of the force about the origin	moment	torque		
FBQ	The gradient of a scalar field fuction is a quantity	vector	vector		

FBQ	If the curl of a vector is zero, then the vector is said to be	irrotational	irrotational	
FBQ	Undisturbed orbital motion under the influence of a central force satisfies's law of areas	Kepler	Kepler	
FBQ	The term \$\$r\dot{{\theta}^{2}}\$\$ in the expression \$\$\ddot{r}{-}r\dot{{\theta}^{2}} represents acceleration	centripetal	radial	
FBQ	The aspect of mechanics that describes the motion of particles without that regard to the dynamical laws that determine which motion actually occurs is referred to as	kinematics	kinematics	
FBQ	If \$\$\oint F\left (\vec{r} \right)\cdot{d}\vec{r}=0\$\$, then \$\$\vec{F}\$\$ is a force	conservative	conservative	
FBQ	The statement \$\$T+V=E(constant)\$\$, where T is the kinetic energy and V the potential energy is known as the theorem	work-energy	work-energy	
FBQ	If \$\$\triangledown\times\vec{F}=0\$\$, then \$\$\vec{F}\$\$ is	conservative	conservative	
FBQ	If the work done in moving a particle from place to place in a force field is independent of the path followed by the particle, then the force field is said to be	conservative	hshsshsh	
FBQ	A damped oscillation driven by external periodic impulses whose frequecy is the same as the natural frequency of the oscillator	resonates	hshsshsh	
FBQ	If the resistance to a simple harmonic oscillation is very strong, the motion is said to be heavily	damped	hshsshsh	
FBQ	In reality, the amplitude of a simple harmonic oscillator gradually decreases in the presence of dissipative forces. Such motion is said to be	damped	hshsshsh	
FBQ	In an LC circuit, the quantity \$\$\frac{1} {\sqrt{LC}}\$\$ represents	angular frequency	hshsshsh	
FBQ	The displacement of a simple harmonic oscillator is given as \$\$x=Acos\left(\omega{t} {+}\phi\right)\$\$. The quantity \$\$\left(\omega{t} {+}\phi\right)\$\$ is the of the oscillation. (symbols have their usual meaning)	phase	phase angle	

7/20/2017 Untitled Document

F	FBQ	The term mormal mode frequency is associated	coupled		
		with oscillation	coupled	coupled	
F	FBQ	The inertial factor in the spring mass system is \$\$m\$\$. The inertial factor in the LC circiut is	1/C	1/C	
F	FBQ	Any motion that repeats itself at a regular intervals of time is said to be	priodic	periodic	
F	FBQ	The equation \$\$\left(\frac{du}{d\theta}\right)^{2}+U^{2}=\frac{2m}{L^{2}}\left(E-V\right)\$\$ is the statement of conservation of	energy	energy	
F	FBQ	For an oscillating system, if the restoring force obeys Hooke's law for small displacement from equilibrium position, the the motion is	simple harmonic	simple harmonic	