■ eExam Question Bank

Coursecode:

\square	FBQ	\square _'s model of describes the atom as a very tiny, massive nucleus with the electrons orbiting at distances away from the nucleus	Rutherford	Rutherford		
\square	FBQ	Thomson's model describes an atom as a homogeneous sphere of positive charges inside of which negatively charged electrons are evenly distributed. This model is otherwise reffered to as the \square model	plum pudding	plum pudding		
\square	FBQ	The quantity $\$ \$$ \lambda=\|frac\{activity\}\{number of undecayed nuclei\}\$\$ defines \square constant of a radioactive nuclide	decay	decay		
\square	FBQ	Isotopes are elements with same number of \square but different number of \square	protons, neutrons	protons, neutrons		
\square	FBQ	The stability of the atom depends on the number of \square and in the atom	protons, neutrons	neutrons, protons		
\square	FBQ	Binding energy per nucleon = \square /total number of protons and neutrons	bindine energy	binding energy		
\square	FBQ	The sketch shown represents the variation of \square per nucleon with nucleon number?	binding energy	binding energy		
\square	FBQ	Calculate the radius the electron in the first orbit of the hydrogen atom from the following data $\begin{aligned} & \$ \$ \mathrm{e}=1.61 \text { times } 10\{-19\} \$ \$ \mathrm{C} ; \\ & \$ \$ \mathrm{~m}=9.1 \text { ltimes } 10^{\wedge}\{-31\} \$ \$ \mathrm{~kg} ; \\ & \$ \$ \mathrm{~h}=6.6 \text { ltimes } 10^{\wedge}\{-34\} \$ \$ \mathrm{Js} ; \end{aligned}$ $\text { \$\$lepsilon_\{0\}=8.85\|times^\{-12\}\$\$ }$ Farad/metre and $\$ \$ c=3.01$ times $10^{\wedge}\{8\} \$ \$ \mathrm{~m} / \mathrm{s}$. Leave your answer to 2 decimal places. \square	0.53	0.53		
\square	FBQ	Which nuclei would have the greater binding energyies per nucleon, A . \$\$^\{56\}_\{26\}Fe\$\$ or B. $\$ \$^{\wedge}\{112\} _\{48\} C d \$ \$?$ \square	A	A		
\square	MCQ	What daughter is formed when \$\$^\{18\}_\{7\}N\$\$ decays by decay beta decay	\$\$^\{18\}_\{8\}O\$\$	\$\$^18\}_\{6\}C\$\$	\$\$^\{19\}_\{8\}O\$\$	\$\$^\{17\}_\{6\}(
\square	MCQ	How many neutrons are in the nucleus of $\$ \$ \wedge\{47\} _\{18\} A r \$ \$$	18	29	27	65

\square	MCQ	The chemical identity of an atom is determined by the number of \qquad -- in its nucleus	protons	neutrons	electrons	nucleons	
\square	MCQ	How many quantum states are there in $\mathrm{n}=3$?	6	8	12	18	
\square	MCQ	The deBroglie waves can be regarded as \qquad waves	pressure	probability	electromagnetic	gravitational	
\square	MCQ	A bullet has a mass of 10 g and the muzzle velocity of $900 \mathrm{~m} / \mathrm{s}$. What is its de Broglie wavelength?	\$\$1.47\times10^\{-39\}m\$\$	\$\$2.211times $10 \wedge\{-38\} \mathrm{m}$ \$ ${ }^{\text {d }}$	\$\$1.99\times10^\{-29\}m\$\$	\$ $\$ 2.98$ litime:	
\square	MCQ	As the speed of a particle increases, the de Broglie wavelength of the particle	increases	decreases	stays the same	the wavelen	
\square	MCQ	The wave behaviour of tennis balls is not observed because	their speed is too small	their momenta are too small	their wavelengths are too small	wave proper the atomic s	
\square	MCQ	Which of the following terms cannot be used to describe both an electron and an atom?	wavelength	mass	energy	momentum	
\square	MCQ	Bohr's model predicts that the energies of an element's characteristic X rays	increase with increase in atomic number	decrease with increase in atomic number	increase with increase in atomic mass	decrease wi atomic mas؟	
\square	MCQ	The spikes in the spectrum of X rays are due to	electrons slowing down in the material	electrons knocked from the outer shell	photons emitted by electrons dropping to fill the inner shell	photons abs electrons in	
\square	MCQ	Sulphur is element number 16. how many electrons do you expect to find in each shell of the sulphur atom?	2,8,6	4,4,4,4	2,4,6,4	2,7,7	
\square	MCQ	The statement that "no two electrons can have the same set of quantum numbers" is \qquad	Hund's rule	correpondence principle	complemntarity principle	Paili's exclu:	
\square	MCQ	Given the quantum number $\mathrm{n}=1$ for a hydrogen atom, which of the following correctly represents the value of its magnetic moment?	\$\|frac\{elhbar\}\{m\}\$	\$ 1 frac elhbar\}\{2m\}	\$\|frac\{2m\}\{elhbar\}\$	\$\|frac\{m\}\{el	
\square	MCQ	In the hydrogen atom, if the quantum number $\mathrm{n}=3$, what values can I take on?	0,1	0,1,2,3	1,2,3	0,1,2	
\square	MCQ	The orbital quantum number determines the \qquad of the atom	total energy	orientation of the angular momentum	the angular	spin magnet	
\square	MCQ	If the energy of the Bohr hydrogen atom is greater than zero, then the	atom is in the excited state	the atom is in the ground state	the electron is no longer bound to the nucleus	the atom err	
\square	MCQ	"An electron can circle an atomic nucleus indefinitely without radiating energy if its orbit an integral number of electron wavelengths in circumference" is a statement of -------	Bohr's theory of the hydrogen atom	Planck's quantisation condition	Heisenberg's uncertainty principle	de Broglie's particle dual	
\square	MCQ	The plum pudding model of the atom was proposed by \qquad	Ernerst Rutherford	Neils Bohr	J. J. Thomson	Max Planck	

\square	MCQ	An electron in the ground state of the Bohr atom has a radius of 0.053 nm . What is the radius of the first excited state?	0.053 nm	0.106 nm	0.159 nm	0.212 nm
\square	MCQ	Which of the following is quantised in the Bohr model?	radius	angular momentum	energy	All of these :
\square	MCQ	Which of the following is NOT a feature of the Bohr model of the atom?	an electron probability cloud	electron in planetary-like orbit	quantised energy levels	accelerating not radiate
\square	MCQ	The three naturally occuring isotopes of neon are $\$^{\wedge}\{20\} _\{10\}$ \{Ne\}\$, \$^\{21\}_\{10\}\{Ne\}\$, $\$^{\wedge}\{22\} _\{10\}\{\mathrm{Ne}\} \$$. Given that the atomic mass of natural neon is 20.18 atomic mass units, Which of these three isotopes must be the most common	\$^\{20\}_\{10\}\{Ne\}\$	\$^\{21\}_\{10\}\{Ne\}\$	\$^\{22\}_\{10\}\{Ne\}\$	They are eq
\square	MCQ	The chemical identity of an atom is determined by the the number of \qquad ------ in its nucleus	protons	neutrons	electrons	neucloens
\square	MCQ	Atoms whose nuclei contain the same number of protons but different numbers of neutrons are called	radioactive	daughters	isotopes	nucleons
\square	MCQ	Which of the following is NOT considered to be a success of Bohr's theory of the atom?	Obtaining the numarical values for the spectral lines in hydrogen	Explaining why there are more lines in emission spectra than the absorption spectra	Explaining why electrons in fixed orbits do not radiate	Providing th features of t
\square	MCQ	Find the radius of the path of a charged particle whose velocity is $\$ \$ 10^{\wedge}\{7\} \$ \$$ in a magnetic field of 0.02 T when the particle's path is perpendicular to the field. The mass and charge of the particle is $\$ \$ 9.1 \times 10^{\wedge}\{-31\} \mathrm{kg} \$ \$$ and $\$ \$ 1.6 \times 10^{\wedge}\{-19\} \$ \$$ respectively	28 cm	34 cm	46 cm	17 cm
\square	MCQ	An electric field of $50 \mathrm{kV} / \mathrm{m}$ is perpendicular to a magnetic field of 0.25 T . What is the velocity of a charge q whose initial direction is perpendicular to both fields and which passes through the fields undeflected	\$ $2 \times 10^{\wedge}\{5\} \$ \$$	\$\$2..51times\{10^\{6\}\}\$\$	\$\$2..01times10^\{4\}\$\$	\$ \$2.51times
\square	MCQ	The term charge quantization refers to the fact that	any charge is an integral multiple of the electronic charge	charge is conserved	an atom which looses electrons is positvely charged	an aton is el
\square	MCQ	The estimate of the atomic radius is of the oder of \qquad	\$ $\$ 10^{\wedge}\{-10\} \mathrm{m}$ \$	\$\$10^\{-16\} m\$\$	\$\$10^\{-7\} m\$\$	\$ \$10^\{-32\} r
\square	MCQ	The interaction which is responsible for the existence of bulk matter is the \qquad	gravitational interaction	strong interaction	electromagnetic interaction	weak interac
\square	MCQ	Which of the following is NOT true about the atom?	The nucleus contains protons and neutrons	The protons are chargeless	The electrons are negatively charged	Electrons oc
\square	MCQ	Calculate the wavelength associated with the motion of a 46 g golf ball at a speed of $36 \mathrm{~m} / \mathrm{s}$. Take \$\$h=6.63ltimes $10^{\wedge}\{-34\} \$ \$ \mathrm{Js}$	\$\$5.01times\{10^\{43\}\} m\$\$	\$\$7.01times $\left.100^{\wedge}\{-10\}\right\} \mathrm{m}$ \$	\$\$3.0\$1times $\left.100^{\wedge}\{-31\}\right\} \mathrm{m}$ \$	4.01times $\{10$

\square						
\square	MCQ	Which of the following experiments does NOTdemonstrate the wavw property of matter ?	x-ray diffraction	electron diffraction	photoelectric effect	polarization electromagn
\square	MCQ	Which of the following is NOT correct about x-ray spectra?	They K-series x-rays are of shorter wavelengths than the L-series x-rays	The K-series x-rays are less penetrating than the L-series x-rays	They L-series x-rays are of shorter wavelengths than the M-series x-rays	The K-series harder than rays
\square	MCQ	Which of the following is correct about x-ray spectra?	\$\$K_\{lalpha\}\$\$ x-ray have shorter wavelength than \$\$K_\{lbeta\}\$\$ x-ray	\$\$K_\{lgamma\}\$\$ x-ray have longer wavelength than \$\$K_\{beta\}\$\$ x-ray	\$\$K_\{lalpha\}\$\$ x-ray have higher frequency than \$\$K_\{lbeta\}\$\$ x-ray	\$\$K_\{lalpha lowerr frequ \$\$K_\{lbeta\}:
\square	MCQ	Which of the following is the correct about X-rays	They are produced when fast moving electrons are stopped by a metal target	They ate fast moving alphaparticles	They are produced when fast moving electrons are slowed down by very high stopping electric potential	They can be strong elect fields
\square	MCQ	What is the value of the orbital angular momentum quantun number I for the ground state of the hydrogen atom?	1	0	2	3
\square	MCQ	What is the number of permitted orientations the orbital angular momentum for $\mathrm{I}=3$?	3	2	7	5
\square	MCQ	Which of the following is the correct electronic configuration of magnesium ($Z=12$)	\$\$2s^\{2\}2s ${ }^{\wedge}\{2\} 2 p\{8\} \$ \$$	\$\$2s^\{2\}2s ${ }^{\wedge}\{2\} 2 p^{\wedge}\{6\} 2 s^{\wedge}\{2\} \$ \$$	\$\$2s^\{2\}2s ${ }^{\wedge}\{1\} 2 p^{\wedge}\{6\} 3 s^{\wedge}\{2\} \$ \$$	\$\$2s^\{2\}2s ${ }^{\wedge}$
\square	MCQ	The atomic number of sulfur is 16 . How many electrons do you expect to find in each shell of a sulphur atom in its ground state?	2, 8, 6	4, 4, 4, 4	2, 4, 6, 4	2, 7, 7
\square	MCQ	A beam of electrons enters a uniform magnetic field of 1.2 T . Calculate the energy difference between electrons whose spins are parallel and antiparallel to the field.	\$\$1.391times\{10^\{-4\}\}\$eV\$\$	\$\$2.21times $\left\{10^{\wedge}\{-23\}\right\}$ eV\$\$	\$\$1.72ltimes $\left\{10^{\wedge}\{-3\}\right\}$ eV\$\$	\$\$2.44ltime:
\square	MCQ	An electron in $\$ \$ \mathrm{He}^{\wedge}\{+\} \$ \$$ is in an n $=2$ orbit. According to Bohr's theory, what is its magnetic moment due to its orbital motion?	$\begin{aligned} & \$ \$ 2.32 \mid \text { times }\left\{10^{\wedge}\{-23\}\right\} \\ & \text { J/T\$\$ } \end{aligned}$	\$\$1.311times $\left\{10^{\wedge}\{-23\}\right\}$ J/T\$\$	\$\$3.22\times $\left\{10^{\wedge}\{-23\}\right\}$ J/T\$\$	\$\$4.541time:
\square	MCQ	Calculate the wavelength in nanometers of photons having an energy of 1.80 eV	691 nm	342 mn	590 nm	342 nm
\square	MCQ	If electrons in hydrogen atoms are excited to the fourth Bohr orbit, how many different frequencies of light may be emitted?	1	3	6	8
\square	MCQ	Two hydrogen atoms have electrons in the $\mathrm{n}=3$ energy level. One of the electrons jumps to the $\mathrm{n}=2$ level, while the other jumps to the $\mathrm{n}=1$. which property is larger for the first photon?	velocity	frequency	wavelength	energy
\square	MCQ	A gas can be identified by means of its spectral lines because each element	can be recognized when greatly magnified	ocupies a unique position in the periodic table	emits characteristic wavelengths when electrically excited	has different

\square						
\square	MCQ	A spectral line is emitted when an atom undergoes a transition between two levels with a difference of 2.4 eV . What is the wavelength of the line?	490 nm	518 nm	615 nm	249 nm
\square	MCQ	In a transition to a state of excitation energy 10.19 eV ahydrogen atom emits 4890 A photon. Determine the binding energy of the intial state	0.37 eV	0.87 ev	0.43 eV	0.67 eV
\square	MCQ	The energy of a hydrogen atom when its electron that orbits in its smallest possible orbit is called \qquad ------	excited state	ionised state	ground state	sationary ste

Showing 1 to 150 of 200 entries

