NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES
DEPARTMENT OF PURE AND APPLIED SCIENCES SEPTEMBER, 2020_1 EXAMINATION

COURSE CODE:
COURSE TITLE:
CREDIT UNIT
TIME ALLOWED
INSTRUCTION:

PHY313
MATHEMATICAL METHOD FOR PHYSICS II
3
($2^{1} / 2$ HRS)
Answer question 1 and any other four questions

1. a. Obtain the $\frac{d f}{d z}$ of the function $f(z)=4 x+y+i(-x+4 y)$
[3 marks]
b. Evaluate the continuity of the followings: (i) $f(z)=\left\{\begin{array}{ll}\frac{z^{3}-i z \pm i}{z-i}, & z \neq i \\ 0 & z=0\end{array}\right.$ at $z=i \quad$ [3 marks]
c. Obtain the limit of the following function $\lim _{z \rightarrow 1+i} \frac{z^{2}-z+1-i}{z^{2}-2 z+2}$
[3 marks]
d. Evaluate the following integral using Residue theorem $\int_{c} \frac{1+z}{z(2-z)} d z \quad$ [3 marks]
e. Obtain the residue of $\frac{1}{\left(z^{2}+1\right)^{3}}$ at $\mathrm{z}=i$
f. State three rules in obtaining Singularity.
[3 marks]
g. Obtain the singularities of the following functions: (i) $f(z)=\sin \frac{1}{z}$ (ii) $g(z)=\frac{e^{1 / z}}{z^{2}}$ [4 marks]
2. a. Show that $f(z)=e^{z}$ is analytic and that $\frac{d e^{z}}{d z}=e^{z}$
[4 marks]
b. Using the complex Integral, show that $\int_{0}^{1}(t-1)^{3} d t=-\frac{5}{4}$
[4 marks]
c. Show that $\int_{0}^{\frac{\pi}{2}} e^{t+i t} d t=\frac{1}{2}\left(e^{\pi / 2}-1\right)+\frac{i}{2}\left(e^{\pi / 2}+1\right)$
[4 marks]
3. a. Determine the pole of the function $f(z)=\frac{1}{z^{4}+1}$
[4 marks]
b. Define is an Analytic function in a domain, hence write an expression for a function $f(z)$ to be analytic.
c. from equation 1e above, show that $f(z)$ satisfies Laplace's equation.
b. Show that the function $f(z)=|z|^{2}$ is continuous everywhere but not differentiable except at the origin.
c. Using Residue theorem, evaluate $\frac{1}{2 \pi i} \int_{c} \frac{e^{z t} d z}{z^{2}\left(z^{2}+2 z+2\right)}$ where C is the circle $|z|=3$. [4 marks]
4. a. If a function $f(z)$ is analytic in a region R , then obtain its derivative at any point $\mathrm{z}=\mathrm{a}$ of R
b. Prove that $\int_{C} \frac{d z}{z-a}=2 \pi i$, where C is the circle $|z-a|=\mathrm{r}$ [4 marks]
c. Use Cauchy's integral formula to evaluate $\int_{C} \frac{z}{\left(z^{2}-3 z+2\right)} d z$ where c is the circle $|z-2|=\frac{1}{2}$
5. a. Obtain the residue of $f(z)=\frac{z e^{z}}{(z-a)^{3}}$ at its pole [4 marks]
b. Use the complex variable technique to obtain the value of the integral $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta} \quad$ [4 marks]
c. Evaluate $\int_{0}^{\infty} \frac{\cos m x}{\left(x^{2}+1\right)} d x$
