

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

September, 2020 EXAMINATIONS

	-	
COURSE CODE:	PHY 407	
COURSE TITLE: CREDIT UNIT: TIME ALLOWED:	SOLID STATE PHYSICS II 3 (2½ HRS)	
INSTRUCTION:	Answer question 1 and any other four questions	
QUESTION 1		
(a) Differentiate between diamagnetic, paramagnetic and ferromagnetic materials		(6 marks)
(b) Define saturation magnetisation		(2 marks)
(c) What is Curie point?		(3 marks)
(d) Define domain wall		(3 marks)
(e) What two sequential st	eps are involved in the principle of Nuclear Magnetic Res	sonance?
		(4 marks)

(f) List four unusual characteristics of ferromagnetic resonance (4 marks)

QUESTION 2

(a) What is dielectric? Give two examples of a dielectric material	(4 marks)
(b). Explain four properties of a dielectric material	(8 marks)

QUESTION 3

What is the effect of a dielectric on the following parameters of parallel plate capacitor?

(i) Potential difference (4 marks) (ii) the charge (4 marks) (iii) the electric field (4 marks)

QUESTION 4

(a) Define dipole relaxation time (3 marks) and the relaxation frequency (3 marks)

(b) A paramagnetic gas at room temperature (T = 300 K) is placed in an external uniform magnetic field of magnitude B = 1.5 T; the atoms of the gas have magnetic dipole moment μ = 1.0μ_B. Calculate (i) the mean translational kinetic energy K of an atom of the gas (3 marks) and (ii) the energy difference ΔU_B between parallel alignment and antiparallel alignment of the atom's magnetic dipole moment with the external field. (3 marks)

QUESTION 5

A compass needle made of pure iron (density 7900 kg/m³) has a length *L* of 3.0 cm, a width of 1.0 mm, and a thickness of 0.50 mm. The magnitude of the magnetic dipole moment of an iron atom is $\mu_{\text{Fe}} = 2.1 \times 10^{-23}$ J/T. If the magnetization of the needle is equivalent to the alignment of 10% of the atoms in the needle, what is the magnitude of the needle's magnetic dipole moment $\vec{\mu}$? (N_A = 6.02 × 10²³; molar mass of Fe = 55.847 g/mol) (**12 marks**)

QUESTION 6

(a) Explain (i) the edge dislocation (5 marks) and (ii) Screw dislocation in crystals (5 marks)

(b) What is a line defect? (2 marks)