

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PURE AND APPLIED SCIENCE SEPTEMBER, 2020_1 EXAMINATIONS

COURSE CODE:	РНҮ 455
COURSE TITLE:	LOWER ATMOSPHERIC PHYSICS
CREDIT UNIT:	3
TIME ALLOWED:	(2½ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

1. Write shot note on the following terms;

(i) Astronomy (3 marks)	(ii) Galaxy (3 marks)	(iii) Aurora (3 marks)
(iv) Redshift (3 marks)	(v) Steady State Universe (2.5 marks)	(vi) Transition (2.5 marks)

(vii) Thermodynamics (2.5 marks) (viii) Stellar Magnitude (2.5 marks)

QUESTION 2

a. Discus briefly the term Atmosphere of the Earth	(4 Marks)
b. Enumerate and discus any three (3) properties of atmosphere	(6 Marks)
c. Mention the region of the Atmosphere is capable of reflecting radio waves,	(2 Marks)

QUESTION 3

a. Mention three (3) major constituents of Earth's atmosphere in terms of Volume and	
	(3 Marks)
b. Briefly discuss atmospheric stratification from highest to lowest	9 Marks)

QUESTION 4 a. State the following law:

(i) Kirchhoff law (ii) Stefan-Boltzmann law (iii) Wien's Displacement Law	(6 Marks)	
b . The Sun converts 6 × 10 ¹¹ kg of hydrogen into helium every second. Only 99.3% (= 0.993) of that goes		
into helium; the rest, 00.7%, goes into the energy that causes the Sun to shine. So, o	over the next 5	
billion years (= 1.6×10^{17} seconds). Calculate the amount of hydrogen that will be converted into		
helium.	(4 Marks)	
c. State the Keplers' second Law	(2 Marks)	
QUESTION 5 a. State the First law of Thermodynamics	(2 Marks)	
b. Discus the any three (3) applications of First law of Thermodynamics	(6 Marks)	
c. Suppose there is heat transfer of 40.00 J to a system, while the system does 10.00	J of work. Later,	
there is heat transfer of 25.00 J out of the system while 4.00 J of work is done on th	e system. What is	
the net change in internal energy of the system?	(4 Marks)	
QUESTION 6 a. Explain the following with relevant derivation; (i) The internal energy of a system held at constant volume;	(4 Marks)	

(ii)The reversible isobaric processes the enthalpy of a system (4 Marks)

b. Hydrogen peroxide decomposes according to the following thermo chemical reaction:

 $H_2O_2(I) \rightarrow H_2O(I) + 1/2 O_2(g); \Delta H = -98.2 \text{ kJ}$

Calculate the change in enthalpy, ΔH , when 1.00 g of hydrogen peroxide decomposes. (4 Marks)