eExam Question Bank

Coursecode:

Choose Coursecode

-Assign Selected Questions to eExam

Show $150 \quad$ entries
Search:

\square	Question Type $\sqrt{\text { 邑 }}$	Question \downarrow ¢	A $\downarrow \uparrow$	B $\quad \\| \uparrow$	C $\quad \\| \uparrow$	D $\quad \downarrow \uparrow$	Answer $\sqrt{ }$ ¢	Remark $\\| \uparrow$
\square	FBQ	In the age distribution of Receipients of Nursing scholarship of 25, 21, 22, $20,19,30,27,28,32$ and 18. The variance is \square \qquad (Hint: use $\S^{2}=\sum(X-\bar{X})^{2}$	215.6	two hundred and fifteen point six				eExam
\square	FBQ	If $X=10,12,8,7,5$. $\sum_{i=1}^{5} X_{i}$ is	42	forty two				eExam
\square	FBQ	Let $Y=2,5,6,7$. $\sum_{j=1}^{4} Y_{j}$ has the value	114	one hundred and fourteen				eExam
\square	FBQ	Take $X=29,27,28,30,35$. \bar{X} is	29.8	twenty nine point eight				eExam
\square	FBQ	One Precaution in correlation is that \square	Correlation is not a causation					eExam

\square								
\square	FBQ	Statistics is the \square that deals with data collection, and summarising facts which are expressible in numerical form	Science					eExam
\square	MCQ	The following data were collected on ten infants. Fin the standard error, \} [IS_\{yx\}]]. Where \} [\backslash S_ $\{y x\}^{\wedge} 2=$ Isum_\{i=1\}^\{10\} (\{y_\{i\} lhat \{y_\{ij\}\})^^2\] and $y_\{i\}$ are the observed values, । [lhat y_\{i\}]] are the predicted values	$\begin{aligned} & \mid\left[I S _\{y x\}=\right. \\ & 5.75 \backslash] \end{aligned}$	$\begin{aligned} & \text { I } \\ & {\left[I S _\{y x\}\right.} \\ & =4,75 \backslash] \end{aligned}$	$\begin{aligned} & \text { I } \\ & {[\text { [S_\{yx\} }} \\ & =2.75 \backslash] \end{aligned}$	$\begin{aligned} & \text { I } \\ & {[\text { [S_\{yx\} }} \\ & =3.75 \backslash] \end{aligned}$	D	eExam
\square	MCQ	Given the general form of linear equation $\backslash[y=b+$ b_\{1\}Xl]. If $b_\{1\} > 0$, then the line slopes	downward	upward	flat	parallel	A	eExam
\square	MCQ	Consider Attitude Scores for five newly admitted Nursing students towards alcoholic patients below: Attitude: 5, 4, 3, 2, 1 . The percentage due to attitude 3 is \qquad	0.5	0.4	0.2	0.3	C	eExam
\square	MCQ	The data below represent systolic blood pressure readings (mm Hg), using Spearman's Rank Order Correlation method, determine correlation coefficient $\left.\backslash\left[r _\{s\}\right\}\right]$ of the two readings.	$\backslash\left[r _\{s\}=0.231\right]$	$\begin{aligned} & \backslash\left[r_{_}\{s\}=\right. \\ & -0.32 \backslash] \end{aligned}$	$\begin{aligned} & \backslash\left[\mathrm{r} _\{\mathrm{s}\}=\right. \\ & 0.32 \backslash] \end{aligned}$	$\begin{aligned} & \backslash\left[r _\{s\}=\right. \\ & -0.23 \backslash] \end{aligned}$	D	eExam
\square	MCQ	Determine Correlation Coefficient 'r' using the above values or from your direct-calculation	0.9	0.91	0.95	0.92	A	eExam
\square	MCQ	Find the value of \backslash [S_\{w_1w_2\}\|] in question one above	4135	4235	4335	4325	D	eExam
\square	MCQ	From the above, evaluate \backslash [IS_\{w_2w_2\}]].	2440	2410	2420	2430	B	eExam

\square								
\square	MCQ	This is for Questions 1 to 4. Two weekly scores of a students are as below <>. Find \[IS_\{w1w1\}]]	6250.25	6150.5	6312.5	6300.5	C	eExam
\square	MCQ	Given that $X=20,30,40$, 50,60 . Find $\backslash[\backslash b a r X \backslash]$.	40,	30,	35	45	A	eExam
\square	MCQ	Consider this distribution 12, 20, 13, 15, 17, 15, 18. Find						
\|bar X_\{m\}\], where \} [lbar $\left.X _\{m\} \backslash\right]$ is as earlier defined.	9	11	13	15	D	eExam		
\square	MCQ	Let $\\left[\mid\right.$ bar $\left.X _\{m\} \backslash\right]$ be the Median Score, Determine \backslash [lbar X_\{m\}\|] in 15, 13, 15, $12,12,16,15,14,13$	10	12	14	16	C	eExam
\square	MCQ	Suppose $\backslash\left[X _\{m\} \backslash\right]$ is the Mode. Find $\backslash\left[X _\{m\} \backslash\right]$ in 15 , $13,15,12,12,16,15,14$, 13.	11	13	15	17	C	eExam
\square	MCQ	Suppose $X=10,12,8,7,5$. Find the value of \backslash [(lsum_\{i=1\}^\{5\} X_\{i\}-2)^2\]	204	214	224	234	D	eExam
\square	MCQ	```Determine \[(\sum_{i=1}^{5} X_{i})^2\] if }X=10,12,8,7 5```	1265	1764	1785	1951	B	eExam
\square	MCQ	Let $Y=2,5,6,7$. Find \backslash [\|sum_\{j=1\}^\{4\} Y_\{j\}]]	114	120	125	141	A	eExam
\square	MCQ	$\text { If } X=10,12,8,7,5$ Determine $\backslash\left[\right.$ sum_ $\{i=1\}^{\wedge}\{5\}$ $\text { X_\{i\}$ } \]	40	41	42	43	C	eExam
\square	MCQ	Given that $X=20,30,40$, 50, 60. Find $\backslash[$ bar $X \backslash]$.	40,	30,	35	45	A	eExam
\square	MCQ	Consider this distribution 12, 20, 13, 15, 17, 15, 18. Find $\|bar X_\{m\}$, where \} [lbar X_\{m\}\|] is as earlier defined.	9	11	13	15	D	eExam
\square	MCQ	Let $\\left[\mid\right.$ bar $\left.X _\{m\} \backslash\right]$ be the Median Score, Determine \backslash [lbar X_\{m\}\|] in 15, 13, 15, $12,12,16,15,14,13$	10	12	14	16	C	eExam

Showing 1 to 35 of 35 entries

