eExam Question Bank

Coursecode:

\square	MCQ	The 3rd and 7th term of a G.P. are 81 and16 respectively, find the 1st and 5th term	250 and 43	729/4 and 36	120 and 24	402/5 and 53	B
\square	MCQ	For a sequence $128,64,32$, \qquad what is the value 12th term of this sequence?	(1/16)	(1/32)	2	4	A
\square	MCQ	Given two set $A=$ $\{5,6,7,8,9,10\}$ and $B=$ $\{x: 5<x<10\}$. Find A / B	\{5,6\}	\{6,8\}	$\{5,10\}$	\{9,10\}	C
\square	MCQ	Suppose a factory has three machines M1, M2, M3 which produce $60 \%, 30 \%$ and 10% of the total production respectively. Of their output, machine M1 produces 2\% defective items, machine M2 produce 3% defective items while machine M3 produces 4% defective items. Find the probability that a part selected at random is defective.	0.054	0.253	0.125	0.025	D
\square	MCQ	Identify the expression for the moment generating function of a poisson random variable	$\begin{aligned} & \$ \$ e^{\wedge}\{\backslash a m b d a\} \\ & \left(e^{\wedge}\{t\}-1\right) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ e^{\wedge}\{\text { lalpha \} } \\ & \left(\mathrm{t}^{\wedge}\{\mathrm{e}\}-2\right) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ e^{\wedge}\{\mid G a m m a\} \\ & \left(e^{\wedge}\{t\}-1\right) \$ \$ \end{aligned}$	$\begin{aligned} & \$ \$ e^{\wedge}\{\text { lbeta }\} \\ & \left(e^{\wedge}\{2 t\}-3\right) \$ \$ \end{aligned}$	A
\square	MCQ	If the probability is 0.40 that a child exposed to a certain contagious will catch it, what is the probability that the tenth child exposed to the disease will be the third to catch it?	0.0523	0.2333	0.0645	0.6451	C
\square	MCQ	Two fair dies are rolled once. Find the probability that the sum of the numbers on the two faces is greater than Ten	$2 / 5$	1/12	1/6	$3 / 4$	B
\square	MCQ	The rth moment about the origin of the gamma distribution is given by	\$\$u_\{r\}^\{'\}=\|frac\{lbeta ${ }^{\wedge}\{r\} \mid G a m m a$ (lalpha +r) $\}\{$ Gamma (lbeta) $\$ \$$	\$\$u_\{r\}^\{'\}=\|frac\{lalpha ${ }^{\wedge}\{r\} \backslash$ Gamma (lalpha +r) \}\{Gamma (lalpha)\}\$\$	$\begin{aligned} & \text { \$\$u_\{r\}^\{'\}=\|frac\{lbeta } \\ & \wedge\{r\} \mid G a m m a(\text { lbeta } \\ & \text { rr)\}\{\Gamma (lalpha } \\ & \text {)\}\$ } \end{aligned}$	\$\$u_\{r\}^\{'\}=\|frac\{lbeta ${ }^{\wedge}\{r\} \backslash$ Gamma (lalpha +r) $\}\{$ IGamma (lalpha)\}\$	D
\square	MCQ	For X a continuous random variable with pdf $\$ \$ f(x)=$ llambda $e^{\wedge}\{$-llambda $\mathrm{x}\} \$ \$$, for x greater than zero and less than infinity, find the mean of	\$\$\|frac $\{1\} \backslash$ beta\} ${ }^{\text {S }}$ \$	\$\$\|frac \{1\}\{\lambda\}\$\$	\$\$\|frac $\{1\}$ lalpha\}\$\$	\$\$\|frac $\{1\}\{e\} \$ \$$	B
\square	MCQ	Find the expected value of the random variable Y whose probability density is given by $\$ \$ f(y)=$ lfrac $\{1\}\{8\}(y+1) \$ \$$ for $2<y<4$	37/12	41/12	30/13	16/17	A
\square	MCQ	A random variable having its probability density function given by $\$ \$ P(x)=\backslash$ binom $\{x-1\}$ $\{r-1\} p^{\wedge}\{r\}(1-p)^{\wedge}\{x-r\} \$ \$$ is called \qquad	Binomial	Exponential	Negative Binomial	Weilbull	C

