

NATIONAL OPEN UNVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES
DEPARTMENT OF PURE \& APPLIED SCIENCES 2020_2 EXAMINATION

COURSE CODE: CHM 301

COURSE TITLE: PHYSICAL CHEMISTRY III
CREDIT: 3 Units
TIME ALLOWED: 3 Hours INSTRUCTION: Answer Question ONE (1) and any other Four (4) Questions

1. a. Mention and explain the classification of systems based on;
i. number of phases they have
(3 marks)
ii. exchange of energy and matter with the environment
b. i. State Zeroth's law of thermodynamics
ii. Calculate the heat necessary to raise the temperature of 3.00 mol of butane from 298 to 573 K at constant pressure. Given that the equation for the molar heat capacity of butane is $\mathrm{C}_{\mathrm{p}}=(19.41+0.233 \mathrm{~T}) \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
(6 marks)
c. Define the following terms and provide their mathematical symbols
i. Enthalpy
ii. Entropy
iii. Gibbs Free Energy
d. What is Joule- Thomson effect?
(2 marks)
2. a. Define the following processes
i. Isothermal process (3 marks)
ii. An adiabatic process
(2 marks)
b. i. Mention the four steps of Carnot cycle operation:
(2 marks)
ii. Define a cyclic process
(2 marks)
c. Derive the formula for the total work done, W, as the gas expands isothermally and reversibly from V_{1} to a volume V_{2}.
(3 marks)
3. a. Define the following processes
i. isobaric process (2 marks)
ii. isochoric process
(2 marks)
b. i. State the first law of thermodynamics
(2 marks)
ii. What is meant by pressure-volume work?
(2 marks)
c. Explain reversible and irreversible Processes
(4 marks)
4. a. Explain the first two processes of Carnot's cycle
(4 marks)
b. i. Describe the term Heat capacity
(2 marks)
ii. what is meant by Internal Energy, U of a system?
(2 marks)
c. An ideal gas initially at $3.00 \times 10^{2} \mathrm{~K}$ and $3.00 \times 10^{5} \mathrm{~Pa}$ pressure occupies $0.831 \mathrm{~m}^{3}$ space. What is the minimum amount of work required to compress the gas isothermally and reversibly so that the final pressure is $6.00 \times 10^{6} \mathrm{~Pa} ?\left(\mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right) .(\mathbf{4}$ marks $)$
5. a.i. Derive the equation for change in internal energy and heat change for a process carried out at constant volume.
(3 marks)
ii. State the Carnot theorem
b. For an ideal gas, prove that Cp and Cv can be related according to the formula $C \mathrm{p}-\mathrm{Cv}=n R$. (4 marks)
c. Given that $\mathrm{W}=-P_{\text {ext }} \mathrm{d} V$, derive the volume-temperature relationship for an adiabatic irreversible process.
(3 marks)
6. Prove that the temperature-volume relationship in a reversible adiabatic process can be written as $T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1}$ or $T V=$ Constant.
(12 marks)
