

NATIONAL OPEN UNVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PURE & APPLIED SCIENCES 2020_2 EXAMINATION...

COURSE CODE: CHM 301CREDIT: 3 UnitsCOURSE TITLE: PHYSICAL CHEMISTRY IIITIME ALLOWED: 3 HoursINSTRUCTION: Answer Question ONE (1) and any other Four (4) Questions

1. a. Mention and explain the classification of systems based or	1;
i. number of phases they have	(3 marks)
ii. exchange of energy and matter with the environment	(4 ½ marks)
b. i. State Zeroth's law of thermodynamics	(2 marks)
ii. Calculate the heat necessary to raise the temperature	of 3.00 mol of butane from 298 to
573 K at constant pressure. Given that the equation	on for the molar heat capacity of
butane is $C_p = (19.41 + 0.233 T) J mol^{-1} K^{-1}$.	(6 marks)
c. Define the following terms and provide their mathematical syn	mbols $(4\frac{1}{2})$
i. Enthalpy	
ii. Entropy	
iii. Gibbs Free Energy	
d. What is Joule- Thomson effect?	(2 marks)
2. a. Define the following processes	
i. Isothermal process	(3 marks)
ii. An adiabatic process	(2 marks)
b. i. Mention the four steps of Carnot cycle operation:	(2 marks)
ii. Define a cyclic process	(2 marks)
c. Derive the formula for the total work done, W, as the gas expa	nds isothermally and reversibly
from V_1 to a volume V_2 .	(3 marks)
3. a. Define the following processes	
i. isobaric process	(2 marks)
ii. isochoric process	(2 marks)
b. i. State the first law of thermodynamics	(2 marks)
ii. What is meant by pressure-volume work?	(2 marks)
c. Explain reversible and irreversible Processes	(4 marks)
4. a. Explain the first two processes of Carnot's cycle	(4 marks)
b. i. Describe the term Heat capacity	(2 marks)
ii. what is meant by Internal Energy, U of a system?	(2 marks)

- c. An ideal gas initially at 3.00×10^2 K and 3.00×10^5 Pa pressure occupies 0.831 m³ space. What is the minimum amount of work required to compress the gas isothermally and reversibly so that the final pressure is 6.00×10^6 Pa? (R= 8.314Jmol⁻¹K⁻¹). (4 marks)
- 5. a.i. Derive the equation for change in internal energy and heat change for a process carried out at constant volume. (3 marks)
- ii. State the Carnot theorem

- (2 marks)
- b. For an ideal gas, prove that Cp and Cv can be related according to the formula Cp Cv = nR.

(4 marks)

c. Given that $W = -P_{ext}dV$, derive the volume-temperature relationship for an adiabatic irreversible process. (3 marks)

6. Prove that the temperature-volume relationship in a reversible adiabatic process can be written as $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ or TV = Constant. (12 marks)