

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2020_2 EXAMINATION

COURSE CODE: MTH301 COURSE TITLE: Functional Analyis Time Allowed: 3 Hours Total Marks: 70 Marks Instruction: Answer Question One and Any other Four questions

(1a) (i) Define an ordered field.	(6 Marks)		
(ii) When does a pair (X, d), which contains a nonempty set X and a real- valued function			
d, said to be pseudometric?	(2 Marks)		
(b) (i) What is an open ball?	(2 Marks)		
(ii) Let $x \in \mathfrak{R}^n$. Prove that the set $B(x, \varepsilon)$, is open for some $\varepsilon > 0$. (4 Marks)		
(iii) Define a closed set in \mathfrak{R}^n .	(2 Marks)		
(c) Prove that in \mathfrak{R}^n ,			
(i) the union of arbitrary collection of open sets is open.(ii) the finite intersection of a collection of open sets is open.	(3 Marks) (3 Marks)		
(2a) (i) When is a set E said to be meager or of first Baire category?	(2 Marks)		
(ii) Let X be a complete metric space and $\{O_n\}$ be a countable collection of dense open			
subsets of X. Prove that $\bigcup O_n$ is not empty.	(4 Marks)		
(b)(i) Define a countable set.	(2 Marks)		

(ii) What is the closure of a subset S of a metric space. (iii) Prove that in \Re^n , every family of disjoint nonempty ope	(2 Marks) en set is countable (2Marks)	
(3a) (i) Define a continuous function of metric spaces.	(2 Marks)	
(ii) Let A and B be two metric spaces. Prove that the function only if $f^{-1}(V)$ is an open set in A, where V is an open set In B	$f: A \rightarrow B$ is continuous if and (4 Marks)	
(b)(i) Define convergent sequence in a metric space.	(2 Marks)	
(ii) Let (X,d) be a metric space. prove that a subset A of X is clo convergent sequence of points in A converges to a point in A.	osed in (X, d) if and only if every (4 Marks)	
(4a) (i) Define a function from \mathfrak{R}^N to \mathfrak{R}^M .	(2 Marks)	
(ii) Let (X, d) and (Y,d ₁) be metric spaces and f a mapping of X into Y. Let τ and τ_1 be the topologies defined by d and d ₁ respectively. Prove that $f:(X,\tau) \to (Y,\tau_1)$ is continuous if and only if $x_n \to x \Rightarrow f(x_n) \to f(x)$, that is, if x_1, x_2, \ldots, x_n is a sequence of points in (X, d) converging to x, then the sequence of points $f(x_1), f(x_2), \ldots, f(x_n)$ in (Y, d ₁) converging to $f(x_n)$. (4 Marks)		
(b)(i) Define an open ball around a point x in a metric space S.	(2 Marks)	
(ii) Explain the concepts of open, closed and infinite intervals		
(5a)(i) Define the neighbourhood of a point in a metric space.	(2 Marks).	
(ii) Let (K, d_k) be a compact metric space. Let (Y, d_Y) be any note that for a continuous function. Prove that $f(K)$ is compact.	metric space and let $f: K \to Y$ (3 Marks)	
(5b)(i) Define a connected topological space.	(2 Marks)	
(ii) Let (K, d) be a compact metric space. prove that every se subsequence.	equence in K has a convergent (5 Marks)	

(6a) Define

(i)	A compact subset of a metric space.	(2 Marks)
(ii)	Open cover of a subset of a metric space.	(2 Marks)
(iii)	A totally bounded metric space.	(2 Marks)

(b) Let X be a metric space and let Y be a subspace of X. Prove that

(i)	If X is compact and Y is closed in X, then Y is compact.	(3 Marks)
(ii)	If Y is compact, then Y is closed in X.	(3 Marks)