NATIONAL OPEN UNIVERSITY OF NIGERIA
 Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja. FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS 2020_2 EXAMINATION

Course Code: MTH 303
Course Title: MTH 303 Vector and Tensor Analysis
Credit Unit: 3
Time Allowed: 3 Hours

Instruction: Answer Question Number One and Any other Four Questions.

1. a) Find a unit vector parallel to the resultant of vectors $r_{1}=2 i+4 j-5 k$ and $r_{2}=i+2 j+3 k \quad$ [4 Marks]
b) Calculate the curl of the vector $\vec{f}=x y z i+3 x^{2} y j+\left(x z^{2}-y^{2} z\right) k$
c) If $A=i-2 j-3 k, B=2 i+j-k$ and $C=i+3 j-2 k$, find $A \bullet(B \times C)$.
d) If $f=f\left(x^{1}, x^{2}, x^{3}, \ldots x^{n}\right)$, then show that $d f=\frac{\partial f}{\partial x^{i}} d x^{i}$.
e) Using Stoke's theorem or otherwise, evaluate $\int_{C}\left[(2 x-y) d x-y z^{2} d y-y^{2} z d z\right]$ where C is the circle $x^{2}+y^{2}=1$, corresponding to the surface of sphere of unit radius.

2a) Determine λ and μ by using vectors, such that the points A, B and C are given as $(-1,3,2),(-4,2,-2)$ and $(5, \lambda, \mu)$ respectively lie on a straight line.
[6 Marks]
b) Evaluate $\iint_{\mathfrak{R}} \sqrt{x^{2}+y^{2}} d x d y$, where \mathfrak{R} is the region bounded by $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$
3a) If $A=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, evaluate $\int_{C} A \bullet d r$ from $(0,0,0)$ to $(1,1,1)$ along $x=t, y=t^{2}$ and $z=t^{3}$. [8 Marks]
b) If the coordinates of P be $(3,4,12)$, then find $\overrightarrow{O P}$, its magnitude and direction cosines. [4 Marks]

4a) Apply the divergence theorem to compute $\iint_{S} u . n d s$ where S is the surface of the cylinder $x^{2}+y^{2}=a^{2}$ bounded by the planes $z=0, z=b$ and where $u=x i-y j+z k$.
b) Let $F=\frac{-y i+x j}{x^{2}+y^{2}}$. Calculate $\nabla \times F$

5a) Evaluate the integral $\iiint_{\mathfrak{R}}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ where \mathfrak{R} is the region bounded by $x+y+z=a(a>0)$ at $x=0, y=0$ and $z=0$.
b) Write the covariant derivative with respect to x^{q} of this tensor $A^{j k}$
6. a) Evaluate $\int_{(0,1)}^{(1,2)}\left(x^{2}-y\right) d x+\left(y^{2}+x\right)$ along
(i) a straight line from $(0,1)$ to $(1,2)$
[3 Marks]
(ii) a straight lines from $(0,1)$ to $(1,1)$ and then from $(1,1)$ to $(1,2)$ and
[3 Marks]
(iii) the parabola $x=t$ and $y=t^{2}+1$.
[3 Marks]
b) Express in matrix notation the transformation equations for a covariant vector $\bar{A}_{q}=\frac{\partial x^{q}}{\partial \bar{x}} A_{q}$ of rank two,
assuming $N=3$.

