NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS
 2020_2 EXAMINATION

Course Code:
Course Title: Credit Unit:
Time Allowed:
Total:
Instruction:

MTH304
Complex Analysis I
3
3 Hours
70 Marks
Answer Question One (1) and Any Other 4 Questions

1. (a) Given that $z_{1}=\left(a_{1}, b_{1}\right), z_{2}=\left(a_{2}, b_{2}\right), z_{3}=\left(a_{3}, b_{3}\right)$ then prove the distributive law: $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$
(b) Given $z_{1}=-12+5 i$ and $z_{2}=2-3 i$, show that $\overline{z_{1+}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$
(c) Given that $z_{1}=2+i$ and $z_{2}=3-2 i$, then evaluate $\left|z_{1} z_{2}\right|$
(d) Find the square root of the complex number $3+2 i$
2.

(a) Let $w=3 i z+z^{2}$ and $z=x+i y$. Find $|w|^{2}$ in terms of x and y.
(b) Find the real and imaginary parts of the following
(i) $w=2 i z^{2}$
(ii) $w=(2-i) \bar{z}$
3. Write each of the following equations in terms of conjugate coordinates.
(i) $x^{2}+y^{2}=4$
(ii) $x-3 y=23$
(iii) $x^{2}+4 y^{2}=9$
4. (a) Evaluate each of the following using theorems on limits
(i) $\lim _{z \rightarrow 1+i}\left(z^{2}-4 z+4\right)$
(ii) $\lim _{z \rightarrow-3 i} \frac{(z+3)(z-1)}{z^{2}-2 z+1}$
(b) Prove that if $|a|<1$

$$
1+a \cos \theta+a^{2} \cos 2 \theta+a^{3} \cos 3 \theta+\cdots=\frac{1-a \cos \theta}{1-2 a \cos \theta+a^{2}}, \text { and }
$$

$$
a \sin \theta+a^{2} \sin 2 \theta+a^{3} \sin 3 \theta+\cdots=\frac{a \sin \theta}{1-2 a \cos \theta+a^{2}}
$$

5. Prove the identities
(a) $\sin ^{3} \theta=\frac{3}{4} \sin \theta-\frac{1}{4} \sin 3 \theta$
(b) $\cos ^{4} \theta=\frac{1}{8} \cos 4 \theta+\frac{1}{2} \cos 2 \theta+\frac{3}{8}$
(c) $\sin ^{2} \theta+\cos ^{2} \theta=1$
6. Verify Green's theorem in the plane for
$\oint_{C}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y$
where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$.
