

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2020_2 EXAMINATION

Course Code:	MTH304
Course Title:	Complex Analysis I
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question One (1) and Any Other 4 Questions

1.	(a) Given that $z_1 = (a_1, b_1), z_2 = (a_2, b_2), z_3 = (a_3, b_3)$ then prove the	e distributive
	law: $z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$	(6 marks)
	(b) Given $z_1 = -12 + 5i$ and $z_2 = 2 - 3i$, show that $\overline{z_{1+}z_2} = \overline{z_1} + \overline{z_2}$	(6 marks)
	(c) Given that $z_1 = 2 + i$ and $z_2 = 3 - 2i$, then evaluate $ z_1 z_2 $	(4 marks)
	(d) Find the square root of the complex number $3 + 2i$	(6 marks)
2.	(a) Let $w = 3iz + z^2$ and $z = x + iy$. Find $ w ^2$ in terms of x and y.	(6 marks)
	(b) Find the real and imaginary parts of the following	
	(i) $w = 2iz^2$	(3 marks)
	(ii) $w = (2-i)\overline{z}$	(3 marks)
3.	Write each of the following equations in terms of conjugate coordinates.	
	(i) $x^2 + y^2 = 4$	(4 marks)
	(ii) $x - 3y = 23$	(4 marks)
	(iii) $x^2 + 4y^2 = 9$	(4 marks)
4.	(a) Evaluate each of the following using theorems on limits	
	(i) $\lim_{z \to 1+i} (z^2 - 4z + 4)$	(3 marks)
	(ii) $\lim_{z \to -3i} \frac{(z+3)(z-1)}{z^2 - 2z + 1}$	(3 marks)
	(b) Prove that if $ a < 1$	

 $1 + a\cos\theta + a^2\cos 2\theta + a^3\cos 3\theta + \dots = \frac{1 - a\cos\theta}{1 - 2a\cos\theta + a^2}$, and

$$a\sin\theta + a^2\sin 2\theta + a^3\sin 3\theta + \dots = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}.$$
 (6 marks)

5. Prove the identities

(a)
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$
 (4 marks)

(b)
$$\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$$
 (5 marks)

(c)
$$\sin^2 \theta + \cos^2 \theta = 1$$
 (3 marks)

6. Verify Green's theorem in the plane for

$$\oint_{C} (2xy - x^{2})dx + (x + y^{2})dy$$
 (12 marks)

where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$.