

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

Course Code: MTH 305 Course Title: Complex Analysis II Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question Number One and Any other Four Questions.

1.) Frances $= \sqrt{\zeta} \sqrt{2}$ is a star frame	[4] 1 1
Ta) Express $z = -\sqrt{6} - \sqrt{2} l$ in polar form.	[4 Marks]
b) If $f(z) = z^2$, prove that $\lim_{z \to z_0} z_0^2$.	[4 Marks]
c) Find the analytic function $f(z) = u + iv$, given that $u = e^{-x}(x \sin y - y \cos y)$.	[4 Marks]
d) If $A(x, y) = 2xy - i x^2 y^3$, find <i>div</i> A.	[4 Marks]
e) Find the residue of $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane.	[6 Marks]
2. a) Given the complex function $f(z) = \frac{1}{(z^2 + 4)}$. Find the first four terms of the Taylor series expansion	
f(z) about $z = -i$.	[7 Marks]
b) Show that the function $e^{x}(\cos y + i \sin y)$ is an analytic function, find its derivative.	[5 Marks]
3a) Write all possible Laurent series for the function $f(z) = \frac{1}{z(z+2)^3}$ about the pole $z = -2$	[7 Marks]
b) Find $\frac{df}{dz}$ of this function: $f(z) = 4x + y + i(-x + 4y)$ along	
(i) imaginary axis	[3 Marks]
(ii) a line when $y = x$	[2 Marks]

4. a) Find the image of the circle |z-1| = 1 in the complex plane under the mapping $w = \frac{1}{z}$. [7 Marks]

b) Evaluate
$$\int_{3i}^{2+4i} (2y+x^2) dx + (3x-y) dy$$
 along the parabola $x = 2t$ and $y = t^2 + 3$. [5 Marks]

5a) Evaluate the following integrand using Cauchy integral formula $\int_c \frac{4-3z}{z(z-1)(z-2)} dz$ where

- c is the circle $|z| = \frac{3}{2}$. [8 Marks]
- b) Find the region of convergence of the series $\sum_{n=1}^{\infty} n! z^n$. [4 Marks]
- 6a) Find the smallest positive integer *n* for which $\left(\frac{1+i}{1-i}\right)^n = 1$ [5 Marks]

. b) If
$$z_1 = 2 + i$$
 and $z_2 = 3 - 2i$, show that $\left| \frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i} \right|^2 = 1$. [7 Marks]