NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

Course Code:
Course Title:
Credit Unit:
Time Allowed:
Total:
Instruction:

MTH315
Analytical Dynamics
3
3 Hours
70 Marks
Answer Question One and Any Other Four Questions

1. (a) Determine the number of degrees of freedom in each of the following cases:
(i) Seven particles moving freely in a plane
(ii) Ten particles moving freely in space.
(b) A system of particles consists of a 3 gram mass located at (2, 0, -1), a 5 gram mass at $(-5,1,3)$ and 2 gram mass at $(3,-1,1)$. Find the center of mass.
(c) A uniform beam is 72 m long and has a mass 200 kg and masses of 120 kg and 160 kg are suspended from its ends; at what point must the beam be supported so that it may rest horizontally?
(d) A pentagon QRSXW has masses 7, 1, 5, 2 and 3 units located at its vertices
$\mathrm{Q}(1,2,-1), \mathrm{R}(3,-2,2), \mathrm{S}(2,-2,3), \mathrm{X}(1,-2,4)$ and $\mathrm{W}(4,1,3)$. Find the coordinates of the center of mass.
2. Three particles of masses $1,3,6$ respectively have position vectors
$r_{1}=(2 t+2) i-11 t^{2} j+\left(t^{3}+6 t-10\right) k$,
$r_{2}=-5 t i+3 t^{2} j+k$,
$r_{3}=\frac{1}{3} t^{3} i-t j+2 t k$, where t is time. Find
(a) The velocity of the center of mass at time $t=1$
(b) The acceleration at $\mathrm{t}=1$.
3. A particle of mass 5 units moves along a space curve whose position vector is given as a function of time t by

$$
r=\left(6 t^{3}-t+2\right) i+\left(2 t^{2}-t\right) j+\left(3 t^{3}\right) k
$$

At time $t=2$, find the
(a) momentum
(b) force field.
4. A particle of mass 2 moves in a force field depending on time t given by $F=42 t^{2} i-8 t j+4 t k$. Assuming that at $t=0$ the particle is located at $r_{0}=i-2 j+k$ and has velocity $v_{0}=2 i+3 j-4 k$, find
(a) the velocity,
(b) the position at any time t.
5. A particle moves along the x axis in a force field having potential $V=\frac{\alpha}{3} x^{3}-\frac{\beta}{3} x^{2}+2 \gamma x+10 \delta$, where α, β, γ and δ are positive constants.

Determine the point(s) of equilibrium.
6. (a) State without proof the Liouville's theorem.
(b) Minimise the integral

$$
\begin{equation*}
I=\int_{0}^{\frac{\pi}{2}}\left[\left(\frac{d y}{d t}\right)^{2}-y^{2}+2 t y\right] d t, y(0)=0 \text { and } y\left(\frac{\pi}{2}\right)=0 \tag{8marks}
\end{equation*}
$$

