

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS

Course Code:		MTH381	
Course Title:		Mathematical Methods III	
Credit Unit:		3	
Time Allowed:		3 Hours	
Total:		70 Marks	
Instruction: Answer Question Number One and any Other Four Questions			
1(a)	(i) write the c	puotient $\frac{1+i}{\sqrt{3}-i}$ in polar form.	(2 marks)
	(ii) compute $\frac{1}{\sqrt{3}}$	$\frac{+i}{\overline{3}-i}$	(1 marks)
	(iii) Find all th	e cube roots of $\sqrt{2} + i\sqrt{2}$	(2 marks)
1 (b)	(i) Evalau	te $ \bar{z}^2 - 2 - (-2 + 2i) $	(2 marks)
	(ii) Evalaute	$ \bar{z}^2 - 2) - \sqrt{8}$	(2 marks)
(iii) Let $f(z) = \overline{z}e^{- z ^2}$. Determine the points at which $f'(z)$ exists			, and find $f'(z)$
		at these points.	(2 marks)
	(iv) Find an an	halytic function f whose imaginary part is given by e	$^{-y}sinx.$ (2 marks)
1 (c) (i) Use Demoivre's theorem with $n = 4$ to prove that $cos4\theta = 8cos^4\theta$			$\cos^4\theta - 8\cos^2\theta + 1$
	And deduce th	at $\cos \frac{\pi}{8} = \left(\frac{2+2\sqrt{2}}{4}\right)^{\frac{1}{2}}$.	(2 marks)
	(ii) Find an ar	halytic function of $z = x + iy$ whose imaginary part is	is (2 marks)
	(ycosy + xsuny)expx (iii) Find the radius of convergence of the following Taylor series: (1 marks)		
	(III) I find the fa	∞	(1 marks)
		$\sum_{n=1} z^n n^{\ln n}$	
1 (d)	(i) Find the re	esidue at each of the singularities of $f(z) = \frac{e^{z^3}}{z(z+1)}$. T	he function $f(z)$ has
	simple	poles at $z = 0$ and $z = -1$. Therefore, we have	
		$R[f,0] = \lim_{z \to 0} zf(z) = \lim_{z \to 0} \frac{e^{z^2}}{z(z+1)} = 1$	
	And R	$e[f, -1] = \lim_{z \to -1} (z+1)f(z) = \lim_{z \to -1} \frac{e^{z^3}}{z} = -e^{z^3}$	e ⁻¹ (1 mark)
	(ii) Find the re	esidue of $f(z) = \frac{cotz}{2}$ at $z = 0$.	(1 marks)

(iii) Evaluate $I = \int_0^{2\pi} \frac{1}{1+asin\theta} d\theta$, 0 < |a| < 1. (2 marks) (2 marks)

2 (a) (i) Evaluate
$$\int_0^1 \frac{1}{x^{\frac{1}{5}}} dx$$
 (2 marks)
(ii) show that $\int_{-\infty}^\infty \frac{x}{x^3 - a^3} dx = \frac{\pi}{\sqrt{3a}}; a > 0$ (1 mark)
(iii) show that $\int_{-\infty}^\infty \frac{\sqrt{x}}{x^3 + 1} dx = \frac{\pi}{3}$ (2 marks)

2 (b) (i) Evalaute $\int_{\gamma} f(z) dz$. If f(z) = z - 1 and γ is the curve given by

$$z(t) = t + it^2, \quad 0 \le t \le 1.$$
 (1 mark)

(ii) Let f(z) = z - 1 and $\gamma = \gamma_1 + \gamma_2$ where γ_1 is given by $z_1(t) = t$, $0 \le t \le 1$ and γ_2 is given by $z_2(t) = 1 + i(t - 1)$, $1 \le t \le 2$, then evaluate $\int_{\gamma} f(z) dz$ (1 mark)

(iii) let γ be given by $z(t) = 2e^{it}$, $0 \le t \le 2\pi$. Show that $\left| \int_{\gamma} \frac{e^z}{z^2 + 1} dz \right| \le \frac{4\pi e^2}{3}$ (1 mark)

2 (c) (i) compute the integral $\int_{\gamma} (z^2 - 1) dz$, where γ is the contour in (1 mark)

(ii) compute the integral $\int_{\gamma} sinzdz$, where γ is the contour

(1 mark)

(ii) compute $\int_{\gamma} \frac{e^z}{z(z-2)} dz$, where γ is the following contour

γ1

3. (a) Let $\gamma = \gamma_1 + \gamma_2$, where γ_1 and γ_2 respectively are given by $z_1(t) = ti$ and $z_2(t) = t + i$, $t \in [0,1]$. Furthermore, let $f(z) = (y - x) + 3ix^2$. Show that the function f cannot have an antiderivative. (4 marks)

γ

γ₂

3 (b) (i) Compute $\int_{\gamma} \frac{e^z}{z(z-2)} dz$, where γ is the following contour (4 marks)

(iii) Compute $\int_{\gamma} \frac{dz}{z}$, where γ is the contour in the given figure

(2 marks)

(4 marks)

4 (a) (i) Compute $\int_{\gamma} \frac{3z+1}{z(z-2)^2} dz$ along the contour γ given in 3b (i) above. (2 marks)

(ii) Compute $\int_{\gamma} \frac{\cosh z}{z(z-2)^2} dz$ where the contour γ is given in the figure below (3 marks)

(iii) Evaluate the function f(z) = ∫₀¹ e^{-z²t} dt. Let γ be any simple closed contour in the complex plane. Changing the order of integration, we have (2 marks)
4 (b) Find the Taylor expansion up to quadratic terms in x − 2 and y − 3, of f(x, y) = ye^{xy}

(2 marks) (2 marks)

4 (c) Find and evaluate the maxima and saddle points of the function

$$f(x,y) = xy(x^2 + y^2 - 1)$$
 (3 marks)

(3 marks)

5 (a) (i) by finding $\frac{dI}{dy}$, evaluate the integral

$$\int_0^\infty \frac{e^{-xy}\sin x}{x} dx$$

(ii) show that the function $1, x, \sin x$ are linearly independent (2 marks)

- (iii) Find the Laplace transform of the function $f(t) = e^{at} (2 marks)$
- 5 (b) (i) Evaluate the double integral

$$I = \iint_R x^2 y dx dy \tag{2 marks}$$

where *R* is the triangular area bounded by the lines x = 0, y = 0 and x + y = 1. Reverse the order of integration and demonstrate that the same results is obtained.

(ii) Find the Laplace transform of
$$\frac{d^2f}{dt^2}$$
 (3 marks)

6 (a) In spherical polar coordinates r, θ, ϕ the element of volume for a body that is symmetrical about the polar axis is $dV = 2\pi r^2 \sin \theta dr d\theta$, whilst its element of surface area is $2\pi r \sin \theta [(dr)^2 + r^2 (d\theta)^2]^{\frac{1}{2}}$. A particular surface is defined by $r = 2a \cos \theta$, where a is a constant and $0 \le \theta \le \frac{\pi}{2}$. Find its total surface area and the volume it encloses, and hence identify the surface. (7 marks)

6 (b) By transforming to cylindrical polar coordinates, evaluate the integral

$$I = \iiint \ln(x^2 + y^2) dx dy dz$$

Over the interior of the conical region $x^2 + y^2 \le z^2$, $0 \le z \le 1$ (5 marks)