

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

COURSE CODE: MTH402 COURSE TITLE: GENERAL TOPOLOGY II TIME ALLOWED: 3 Hours TOTAL MARKS: 70 Marks Instruction: Answer Question One and Any other Four Questions

(1a)	Define	
(i)	A Topological space	(2 Marks)
(ii)	Hausdorff space	(2 Marks)
(iii)	Dense sets in a topological space	(2 Marks)

(b) Let X be a nonempty set and τ be a collection of subsets of X. Prove that the intersection $\tau = \bigcap_{\alpha \in \Delta} \tau_{\alpha} \ (\alpha \in \Delta, \text{ for some index set } \Delta)$ on X is itself a topology on X. (4 Marks)

(c)(i) Let X be a Hausdorff space. Prove that for all $x \in X$, the singleton set $\{x\}$ is closed.

(4 Marks)

(ii) Let X be a Hausdorff space. Prove that a sequence of points of X converges to at most one point of X, that is if a sequence $\{x_n\}$ in X, converges, the limit is unique. (4 Marks)

(d) Let (X, τ) be a topological space and let A be a subset of X. Prove that A is dense if and only if every non-empty open subset U of X implies $U \cap A = \phi$. (4 Marks)

(2a) Define a separation of a topological space. (2 Marks)

(b)(i) Prove that the image of a connected topological space under a continuous function is connected. (2 Marks)

(ii) Prove a finite Cartesian product of connected spaces is connected. (2 Marks)

(c)(i) Define a Lesbesgue number of an open cover of a topological space. (2 Marks)

(ii) State and prove the extremum value theorem of topological spaces. (4 Marks)

(3a) Define

(i)	Baire topological space.	(2 Marks)
(ii)	Metrizable topological space	(2 Marks)
(iii)	Neighbourhood basis	(2 Marks)

(b) Prove the sequence Lemma of topological spaces:

If X is a topological space and A is a subset of X, if there exists a sequence $\{x_n\}$ of (i) elements converging to $x \in X$, then $x \in \overline{A}$ that the converse holds if X is metrizable. (3 Marks)

(ii) If X and Y are topological spaces and $f: X \to Y$ is a function. If the function X is continuous, then for every sequence $\{x_n\}$ in X such that $\{x_n\}$ converges to a point x in X, then the sequence $\{f(x_n)\}$ converges to f(x) in Y and that the converse is true if X is metrizable. (3 Marks)

(4a)(i) Define a basis for a topology X.

(b) Let B and B^{*} be a basis for the topologies τ and τ^* respectively on X. Prove that the following are equivalent:

(i) τ^* is finer than τ .

(ii) For each $x \in X$ and each basis element $B_1 \in B$ containing x, there exists a basis element $B_2 \in B^*$ such that $B_2 \subset B$. (3 Marks)

(b) Let d be a metric on the set X. Prove that the collection of all balls $B_{\delta}(x,\delta)$ for $x \in X$ and $\delta > 0$ is a basis for a topology on X, called the metric topology induced by δ . (3 Marks)

(5a)(i) Define a subspace topology

(5a)(ii) Prove that the collection $S = \{\pi_1^{-1}(U); U \text{ is open in } X\} \cup \{\pi_2^{-1}(V): V \text{ is open in } Y\}$ is a sub-basis for the product topology on $X \times Y$. (4 Marks)

(b)(i) Define the neighbourhood of the element of topological space (2 Marks)

(ii) Let A be a subset of the topological space X. Let A^* be the set of all limit points of A. Prove that $A = A \cup A^*$. (4 Marks)

(6a)(i) Define a path in a topological space. Hence, when is a topological space said to be (2 Marks) path connected?

(ii) Prove that the connected components of a topological space X are connected disjoint subspaces of X, whose union is X, such that each nonempty connected subspace of X intersects only one of them. (4 Marks)

(3 Marks)

(3 Marks)

(2 Marks)

(b)(i) Define the interior and closure of the subset of a topological space X. (3 Marks)

(ii) Let Y be a subspace of a topological space X. Prove that asset A is closed in Y if and only if it is equal to the intersection of a closed set of X with Y. (3 Marks)