

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS

Course Code:	MTH421
Course Title:	Ordinary Differential equations
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question Number One and any Other Four Questions

1 (a) (i) Classify the DE
$$\frac{y''-2}{y'+3} = x$$

(ii) Is the following DE Linear or nonlinear ? $\frac{y''-2}{y'+3} = xy$ (1 mark)

(iii) find the particular solution of the IVP

$$y' = 6x^2y, y(3) = 1,$$

And give its interval of existence

- (b) (i) Show that the function $f(x) = \frac{1}{1+x^2}$ is a solution of $(1 + x^2)\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = 0$ on every interval a < x < b of the x axis. (3 marks)
- (b) (ii) given that every solution of

$$\frac{dy}{dx} + y = 2xe^{-x}$$

Maybe be written in the form $y = (x^2 + c)e^{-x}$, for some choice of the arbitrary constant *c*, solve the given initial value problem

$$\frac{dy}{dx} + y = 2xe^{-x}$$
 $y(0) = 2$ (3 marks)

(c) Use the operator method described in this section to find the general solution of the given linear system 5x' + y' - 5x - y = 0 (5 marks)

(d) Determine the stability property of the critical point at the origin for the following system

 $y_1' = y_1^3 - y_1^3$ (4 marks)

(3 marks)

(3 marks)

2. Use the operator method to find the general solution of the linear system

$$x' + y' - 2x - 4y = e'$$
 (12 marks)

3. consider the linear system

$$x' = 5x + 3y, \quad y' = 4x + y$$

(a) Show that

 $x = 3e^{7t}$, $y = 2e^{7t}$ and $x = e^{-t}$ $y = -2e^{-t}$ Are solution of the system. (51)

(5 marks)

- (b) Show that the two solutions of part (a) are linearly independent on every interval $a \le t \le b$, and write the general solution of the system. (2 marks)
- (c) Find the solution

$$y = f(t), \quad y = g(t)$$

of the system which is such that $f(0) = 0$ and $g(0) = 8$ (5 marks)

4. (a) show that the solutions of the following system of differential equations remain bounded at $t \to \infty$

$$u' = v - u$$

$$v' = -u$$
 (3 marks)

4 (b) let A be the matrix given by:
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
. Find

(i)	The eigenvalues	(3 marks)
(ii)	The generalized eigenspaces	(3 marks)
(iii)	A fundamental matrix for the system $y'(t) = A_y$.	(3 marks)

5. Let $V(x, y) = x^2(x - 1)^2 + y^2$. Consider the dynamical system

$$\frac{dx}{dt} = -\frac{\partial V}{\partial x'},$$
$$\frac{dy}{dt} = -\frac{\partial V}{\partial y'},$$

(a) Find the critical points of this system and determine their linear stability. (5 marks)

(b) Show that *V* decreases along any solution of the system. (2 marks)

- (c) Use (b) to prove that if $z_0 = (x_0, y_0)$ is an isolated minimum of V then z_0 is an asymptotically stable equilibrium. (5 marks)
- 6. (a) Consider the boundary value problem

$$x\frac{d^2w}{dx^2} + (a-x)\frac{dw}{dx} = -\lambda w$$
$$w(L) = w(R) = 0$$

Where a, L(> 0) and R(> L) are real constants.

By casting the problem in self-adjoint form shows that the eigenfunctions, w_1 and w_2 , corresponding to different eigen values, λ_1 and λ_2 are orthogonal in the sense that

$$\int_{L}^{R} e^{-x} x^{a-1} w_{1} w_{2} dx = \int_{L}^{R} e^{-x} x^{a} \frac{dw_{1}}{dx} \frac{dw_{2}}{dx} dx = 0$$

Show also that

$$\lambda_{i} \frac{\int_{L}^{R} e^{-x} x^{a} \left(\frac{dw_{i}}{dx}\right)^{2} dx}{\int_{L}^{R} e^{-x} x^{a-1} w_{i}^{2} dx}$$

And hence that all eigenvalues are positive.

(6 marks)

6 (b) Determine the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$y'' + \lambda y = 0, \quad 0 \le x \le L$$

 $y(0) = 0, \ y(L) = 0$ (6 marks)