

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

Course Code: MTH422

Course Title: Partial Differential Equations

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question One and Any Other Four Questions

Q1 (a) Define each of the following:

- i) a nth order partial differential equation (2 marks)
- ii) a linear partial differential equation (2 marks)
- iii) a slip (3 marks)
- (b) Find the general solution of $xz_x + yz_y = z$. (8 marks)

(c) Given that
$$xp + yq = pq$$
. Find the initial element, if $x = x_0$, $y = 0$ and $z = \frac{x_0}{2}$, $z(x, 0) = \frac{x}{2}$. (7 marks)

Q2 (a) State the conservation law

(3 marks)

(b) Suppose u is the density of the substance and F is the flux, show that $ut + a(u)u_x = 0$.

(9 marks)

Q3 (a) State the types of solutions a partial differential equation can have (3 marks)

(b) Consider
$$z = px + qy + f(p, q)$$
, find the complete solution (9 marks)

Q4 (a) How can a second order semi-linear partial differential equation be classified? (3 marks)

(b) Given that
$$z \frac{\partial^2 u}{\partial x \partial y} + 2x \frac{\partial^2 u}{\partial y \partial z} = 0$$
 is hyperbolic-parabolic in R^3 and

$$A_{ij} = \begin{pmatrix} 0 & z & 0 \\ z & 0 & x \\ 0 & x & 0 \end{pmatrix}. \quad \text{Find } \lambda. \tag{9 marks}$$

- Q5 (a) What is a well posed partial differential equation?
 - (b) Show that characteristics are invariant under regular transformation. (9 marks)
- Q6 (a) Define an element of a stripe

(2 marks)

- (b) Copy and complete the following:
- $x \frac{\partial z}{\partial y} + y \frac{\partial z}{\partial y} = cosxy$ is ______ order and _____ homogeneous PDE i) (2 marks)
- ii) $\frac{\partial^2 u}{\partial x \partial y} + \left(\frac{\partial u}{\partial x}\right)^2 = \frac{\partial y}{\partial z} + z^3 \text{ is } ___ \text{ order and } __ \text{ linear PDE. } (2 \text{ marks})$ iii) $\frac{\partial^2 u}{\partial t} c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 0 \text{ is } __ \text{ order and } __ \text{ homogeneous PDE } (2 \text{ marks})$
- iv) $\left(\frac{\partial^2 u}{\partial x^2}\right)^3 + \left(\frac{\partial^2 u}{\partial y^2}\right) + \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial u}{\partial y} = 0$ is _____ order and ____ linear PDE (2 marks)
- (c) Solve $4(1+z^3) = 9z^4pq$

(2 marks)