NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:
 COURSE TITLE: CREDIT UNIT:
 TIME ALLOWED:
 INSTRUCTION:
 QUESTION 1

PHY 301
CLASSICAL MECHANICS II 3
($2^{1} 2$ HRS)
Answer question 1 and any other four questions
(a) Differentiate between holonomic and non-holonomic constraints
(4marks)
(b) What is constraint?
(2marks)
(c) Write a Lagrangian equation of one dimensional harmonic oscillator
(5marks)
(d) What is Legendre transform?
(e) What is non-inertial reference frame?
(f) Use the Kepler's first law in polar coordinates to describe the space for $\mathrm{p}>1, \mathrm{p}=0$ and $\mathrm{p}<1$

QUESTION 2

(a) Differentiate between fixed and rotating reference frame.
(4marks)
(b) For the elliptical wire, write the constraint equation in x and y with and without the displacements and differentiating the two.
(c) Write a constraint equation for elliptical wire.

QUESTION 3

(a) Use the Lagrangian to construct the Hamiltonian for the system.
(3marks)
(b) Write a Lagrangian equation in Cartesian coordinate. (3marks)
(c) Mention three (3) criteria that satisfy virtual displacement.

QUESTION 4

(a) Differentiate between virtual displacement and virtual work. (4marks)
(b) Use the generalized equation of motion prove the Euler-Lagrangian equation(6marks)
(c) What is Classical Hamiltonian?
(2marks)

QUESTION 5

(a) Draw a diagram of Atwood machine.
(3marks)
(b) Differentiate between rheonomic and scleronomic constraints.
(c) Use Kepler's second law expression for angular momentum and prove the Kepler's third law

QUESTION 6

(a) State D' Alembert's Principle.
(2marks)
(b) Differentiate between Hamiltonian and Lagrangian methods.
(4marks)
(c) Generate the Hamiltonian's equation of motion using the classical Hamiltonian.
(6marks)

