NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:	РНҮ 301
COURSE TITLE:	CLASSICAL MECHANICS II
CREDIT UNIT:	3
TIME ALLOWED:	(2 ¹ / ₂ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

(a) Differentiate between holonomic and non-holonomic constraints	(4marks)
(b) What is constraint?	(2marks)
(c) Write a Lagrangian equation of one dimensional harmonic oscillator	(5marks)
(d) What is Legendre transform?	(2marks)
(e) What is non-inertial reference frame?	(2marks)
(f) Use the Kepler's first law in polar coordinates to describe the space for	or
p>1, p = 0 and p < 1	(7marks)

QUESTION 2

(a) Differentiate between fixed and rotating reference frame.	(4marks)
(b) For the elliptical wire, write the constraint equation in x and y with	
and without the displacements and differentiating the two.	(6marks)
(c) Write a constraint equation for elliptical wire.	(2marks)

QUESTION 3

(a) Use the Lagrangian to construct the Hamiltonian for the system.	(3marks)
(b) Write a Lagrangian equation in Cartesian coordinate.	(3marks)
(c) Mention three (3) criteria that satisfy virtual displacement.	(6marks)

QUESTION 4

(a)	Differentiate between virtual displacement and virtual work.	(4marks)
(b)	Use the generalized equation of motion prove the Euler-Lagrangian of	equation(6marks)
(c)	What is Classical Hamiltonian?	(2marks)

QUESTION 5

(a) Draw a diagram of Atwood machine.	(3marks)
(b) Differentiate between rheonomic and scleronomic constraints.	(4marks)
(c) Use Kepler's second law expression for angular momentum and prov	re
the Kepler's third law	(5marks)

QUESTION 6

(a) State D' Alembert's Principle.	(2marks)
(b) Differentiate between Hamiltonian and Lagrangian methods.	(4marks)
(c) Generate the Hamiltonian's equation of motion using the classical	Hamiltonian.
	(6marks)