

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE: PHY 303 COURSE TITLE: SPECIAL RELATIVITY CREDIT UNIT: 2 TIME ALLOWED:(2 HRS)

INSTRUCTION:

Answer question 1 and any other three questions

QUESTION 1

(a) A particle is travelling through the Earth's atmosphere at a speed of 0.75c. To an Earth-bound observer, the distance it travels is 2.5km. How far does the particle travel in the particle's frame of reference?

(4mks)

(b) State Einstein's special theory of relativity.	(4mks)
(c) What is the principle of simultaneity?	(2mks)
(d) Write down the Lorentz transformation equations.	(6mks)
(e) A man in a boat moving at a constant speed of 50km/h relative to the shore	throws an object in the forward
direction with a speed of 20km/h. Determine the speed of the object as measur	ed by an observer at rest at the
shore. (5mks)	
(f) State the properties of Lorentz transformation.	(4mks)
QUESTION 2	

Calculate the momentum of an electron moving at a speed of 0.8c. (15mks)

QUESTION 3

Evoluoto 1	for
Evaluate (n^2)	101.
$1 - (\frac{\nu}{2})$	
$\sqrt{-(c^2)}$	

(i) $v = 10^{-2}c$ (5mks) (*ii*)v = 0.87c (5mks) (*iii*)v = 0.9998c (5mks)

QUESTION 4

A starship Enterprise moves at a speed of 0.9c relative to the earth and a Bird-of-Prey moves in the same direction at a speed of 0.7c relative to the earth.(a) What does the navigator of the Bird-of-Prey report for the speed of the Enterprise? $(7\frac{1}{2} \text{ mks})$

(a)If the Enterprise has blue light of wavelength, 475nm, what wavelength does the Kling on ship see as it leaves? $(7\frac{1}{2} \text{ mks})$

QUESTION 5

If an electron travels through a conductor in a laboratory at a speed of 0.95c, determine the total energy of the electron in laboratory frame of reference. (15mks)