NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:
COURSE TITLE: CREDIT UNIT: TIME ALLOWED:

INSTRUCTION:

PHY 306
OPTICS II
2
(2 HRS)
Answer question 1 and any other three questions

QUESTION 1

a. List the two classified categories of diffraction limited system and what does the resolution ability of diffraction-limited system depends on.

4 marks
b. An astronomical observatory has a 50 inch telescope. Calculate the minimum angle of resolution for this telescope. Take $\lambda=7000 \AA$.

5 marks
c. Mention three (3) similarities and difference each between Zone plate and convex lens

5marks

d. Explain the Limit of resolution and the Resolving power of an optical device. $\mathbf{4}$ marks
e. Calculate the dip in the resultant intensity of two $\left(\frac{\sin \beta}{\beta}\right)$ curves according to Rayleigh's criterion, i.e., when the maximum of one curve falls on the minimum of the other curve. $\mathbf{5}$ marks
f. Explain the double slit diffraction pattern.

2 marks

QUESTION 2

A. Highlight two examples of a body performing simple harmonic motion. (5marks)
B. A particle of mass 2 kg is executing simple harmonic motion, with a period of 5 s and an amplitude of 8 cm . One-half second after the particle has passed through its equilibrium position, what is its (a) displacement ($\mathbf{2} .5$ marks) (b) velocity ($\mathbf{2} .5$ marks) (c) acceleration ($\mathbf{2} .5$ marks) and (iv) its total energy of the particle at any distance y from 0 ? ($\mathbf{2} .5$ marks)

QUESTION 3

a. From Young's Double Slit experiment, show that the fringe- width β, is given as $\mathbf{1 0}$ marks

$$
\beta=\frac{D}{d} \lambda
$$

b. In a two-slit interference pattern with $\lambda=6000 \AA$, the zero order and tenth order maxima fall at 15.44 mm order and 17.34 mm respectively. Find the fringe width.

5marks

QUESTION 4

a. Differentiate between Biprism and LIoyd's mirror fringes.

7marks

b. A convex lens inserted between the Biprism and the eyepiece gives two images of the slit in two positions. In a Fresnel's Biprism experiment, the eye piece is at a distance of 100 cm from the slit. In one case, the two images of the slitare5.05mmapart, and in the other case 3.50 mm apart. If sodium light of wavelength $5893 \AA$ is used, find the thickness of the interference fringes.

8marks.

QUESTION 5

a. Explain (i) Diffraction (ii) Diffracting grating.

6marks
b. Differentiate between constructive and destructive interference and obtain the expressions for the condition of both.

9marks

