NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA
FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

## COURSE CODE: <br> PHY 307 <br> SOLID STATE PHYSICS I COURSE TITLE: <br> CREDIT UNIT:2 <br> TIME ALLOWED: (2 HRS)

INSTRUCTION: Answer question 1 and any other three questions

## QUESTION 1

a. State Bragg's law of diffraction and give two geometrical facts that are necessary for the derivation of the law.
b. An X-ray diffractometer recorder chat for an element which has a cubic crystal structure shows diffraction peaks at the following $2 \theta: 40,58,73,86.8,100.4$ and 114.7. The wavelength of the incoming X-ray used was $1.540 \AA$. Determine the:
i. Type of the cubic structure possessed by the element
ii. Lattice constant of the element
c. Prove that the reciprocal lattice vectors as defined by:
$A=2 \pi \frac{b \times c}{a, b \times c} ; B=2 \pi \frac{c \times a}{a, b \times c} ; C=2 \pi \frac{a \times b}{a, b \times c}$ satisfy:

$$
A . B \times C=\frac{8 \pi^{3}}{a . b \times c}
$$

## QUESTION 2

Define the following terms:
i.Vacancies (3mks)
ii.Crystal Imperfection (3mks)
iii Dislocation
iv. Plane defect
v. Superconductors

## QUESTION 3

a. What is a Point group and Point Operation
b. Explain the phenomena of X-Ray Scattering by atom
c. List three effects which contribute to the binding of solids AND two effects which prevent the collapse of the solids:

## QUESTION 4

a. Describe the Hall effect
b. Define Crystal binding and mention the types of crystal bonding
c. Explain why the electrical conductivity of semiconductors increase with rise in temperature?
(5mks)

## QUESTION 5

Match the type of unit cell given in Column I with the features given in Column II.

| Column I | Column II |
| :---: | :---: |
| A. Primitive cubic unit cell | 1.Each of the three perpendicular <br> edges compulsorily have the <br> different edge length i.e., $a \neq b \neq c$ <br> B. Body centred cubic unit cell <br> C. Face centred cubic unit cell <br> D. End centred orthorhombic unit cell <br> 2.Number of atoms per unit cell is <br> one <br> 3.Each of the three perpendicular <br> edges compulsorily have the same <br> edge length i.e., $a=b=c$ <br> 4. In addition to the contribution from <br> the corner atoms the number of <br> atoms present in a unit cell is one |
|  | 5. In addition to the contribution from <br> the corner atoms the number of <br> atoms present in a unit cell is three |

