NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:
 COURSE TITLE:
 CREDIT UNIT:
 TIME ALLOWED:
 INSTRUCTION:
 QUESTION 1

PHY 313
MATHEMATICAL METHODS FOR PHYSICS I 3
($\mathbf{2 1}^{1} / 2$ HRS)
Answer question 1 and any other four questions

Verify that:
a. $\mathrm{a}(\sqrt{2}-\mathrm{i})-\mathrm{i}(1-\sqrt{2} \mathrm{i})=-2 \mathrm{i}$
(2mks)
b. $(2-3 i)(-2+i)=-1+8 i$
(3mks)
c. Reduce the quantity $\frac{5 i}{(1-i)(2-i)(3-i)}$ to a real number
d. Show that

- $\operatorname{Re}(i z)=-\operatorname{Im} z$
- $\operatorname{Im}(i z)=\operatorname{Re}(z)$
e. Write the following functions $f(z)$ in the forms $f(z)=u(x, y)+i v(x, y)$ under Cartesian coordinates with $u(x, y)=\operatorname{Re}\left(f(z)\right.$ and $v(x, y)=\operatorname{Imf}(z), f(z)=z^{3}+2+1$
f. Show that if $f(z)$ is continuous at Zo , so is $|f(z)|$
g. What is a complex exponential function for $Z=x+i y$

QUESTION 2

Evaluate the following integrals:
a. $\int_{1}^{2}(t 2+i) 2 d t \quad 3 \mathrm{mks}$
b. $\int_{0}^{\pi / 4} e-2 i t d t$
$3 m k s$
c. Express this equation in the form of $x+$ iy with $x, y \in \mathbb{R}$

$$
\frac{i}{1-i}+\frac{1-i}{i}
$$

4mks
d. What are the two methods are used for criterion for convergence?

QUESTION 3

a. If C is the boundary of a triangle with vertices at the points $0,3 \mathrm{i}$ and -4 oriented counter clockwise compute the contour integral $\int_{C}\left(e^{2}-\dot{z}\right) d z$

5 mks
b. What is the associative law for multiplication of complex numbers 2 mks
c. Show that $\left(\mathrm{Z}_{1} \mathrm{Z}_{2}\right) \mathrm{Z}_{3}=\mathrm{Z}_{1}\left(\mathrm{Z}_{2} \mathrm{Z}_{3}\right)$ for all $\mathrm{Z}_{1}, \mathrm{Z}_{2}, \mathrm{Z}_{3} \in \mathbb{C}$ 5mks

QUESTION 4

Use binomial theorem to expand:
a. $(1+\sqrt{3} i)^{2011}$
6 mks
b. $(1+\sqrt{3} i)^{-2011}$ 6 mks

QUESTION 5

a. Show that $|\cos (z)|^{2}=(\cos x)^{2}+(\sinh y)^{2}$ for all $z \in \mathbb{C}$ where $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$

$$
6 \mathrm{mks}
$$

b. $|\sin z|^{2}=(\sin x)^{2}+(\sinh y)^{2}$ for all complex numbers $z=x+y i \quad 6 m k s$

QUESTION 6

a. Compute $\cos \left(\frac{\pi}{3}+i\right)$

6 mks
b. Let $\mathrm{f}(\mathrm{z})\left\{\begin{aligned} \frac{i 3}{z 2} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{aligned}\right.$

6 mks

Show that $f(z)$ is actually nowhere differentiable i.e. the complex derivative $f ;(z)$
does not exist for any $\mathrm{Z} \in \mathrm{C}$

