

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:	РНҮ 313
COURSE TITLE:	MATHEMATICAL METHODS FOR PHYSICS I
CREDIT UNIT:	3
TIME ALLOWED:	(2½ HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

Verify that:

a.	$a(\sqrt{2}-i) - i(1 - \sqrt{2}i) = -2i$	(2mks)			
b.	(2-3i)(-2+i) = -1 + 8i	(3mks)			
c.	Reduce the quantity $\frac{5i}{(1-i)(2-i)(3-i)}$ to a real number	(3mks)			
d.	Show that				
•	$\operatorname{Re}(\operatorname{iz}) = -\operatorname{Imz}$	(2mks)			
•	Im(iz) = Re(z)	(2mks)			
e.	Write the following functions $f(z)$ in the forms $f(z) = u(x, y) + iv(x, y)$ under Cart	esian			
	coordinates with $u(x, y) = \text{Re}(f(z) \text{ and } v(x, y) = \text{Im}f(z), f(z) = z^3 + 2 + 1$	(4mks)			
f.	Show that if $f(z)$ is continuous at Zo, so is $ f(z) $	(5mks)			
g.	What is a complex exponential function for $Z = x + iy$	(1mk)			

QUESTION 2

Evaluate the following integrals:

a.	$\int_1^2 (t2+i)2 dt$	3mks
b.	$\int_0^{\pi/4} e - 2it \ dt$	3mks
c.	Express this equation in the form of x + iy with x, $y \in \mathbb{R}$	
	i 1-i	

$$\frac{i}{1-i} + \frac{1-i}{i}$$
 4mks

d. What are the two methods are used for criterion for convergence? 2mks

QUESTION 3

a.	If C is the boundary of a triangle with vertices at the points 0, 3i and	-4 oriented counter
	clockwise compute the contour integral $\int_{C} (e^2 - \dot{z}) dz$	5mks
b.	What is the associative law for multiplication of complex numbers	2mks

c. Show that $(z_1z_2)z_3 = Z_1(Z_2Z_3)$ for all $Z_1, Z_2, Z_3 \in \mathbb{C}$ 5mks

QUESTION 4

Use binomial theorem to expand:

a.
$$(1 + \sqrt{3} i)^{2011}$$
 6mks
b. $(1 + \sqrt{3} i)^{-2011}$ 6mks

QUESTION 5

a. Show that
$$|\cos(z)|^2 = (\cos x)^2 + (\sinh y)^2$$
 for all $z \in \mathbb{C}$ where $x = \operatorname{Re}(z)$ and $y = \operatorname{Im}(z)$

6mks

b.
$$|\sin z|^2 = (\sin x)^2 + (\sinh y)^2$$
 for all complex numbers $z = x + yi$ 6mks

QUESTION 6

a. Compute $\cos(\frac{\pi}{3} + i)$ 6mks b. Let $f(z)\begin{cases} \frac{z^3}{z^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$ 6mks

Show that
$$f(z)$$
 is actually nowhere differentiable i.e. the complex derivative $f_i(z)$

does not exist for any $Z \in C$