NATIONAL OPEN UNIVERSITY OF NIGERIA
 PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES
 DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:	PHY 314
COURSE TITLE:	NUMERICAL COMPUTATIONS
CREDIT UNIT:	2
TIME ALLOWED:	(2 HRS)
INSTRUCTION:	Answer question 1 and any other three questions
QUESTION 1	

(a) Differentiate between exact numbers and approximate numbers.
(4 marks)
(b). List three effective rules that are used to recognize and handling significant digits ($\mathbf{3}$ marks)
(c). An approximate value of π is given by $\mathrm{x}_{1}=22 / 7=3.1428571$ and its true value is $\mathrm{x}=$
3.1415926. Find (i) the absolute error and (ii) the relative error
(4 marks)
(d). Assume a given table of values $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=0,1,2 \ldots \ldots \mathrm{n}$ for a given function $y=f(x)$, briefly discuss the three types of finite differences known and state their individual first difference operator.
(e). Mention four methods of solving a first order ordinary differential equation. (4 marks)
(f). List four types of operator that are usually employed in C++ programming(4 marks)

QUESTION 2

(a). Define arithmetic precision	(2 marks)
(b) (i) List four types of errors encountered in numerical computations	(4 marks)
(ii) Discuss any three of them	(9 marks)

QUESTION 3

(a). Find the difference $\sqrt{6.37}-\sqrt{6.36}$ to three significant figures
(b).What is interpolation?
(c). (i) Find the absolute and relative errors when the exact answer and the computed answer in an experiment are respectively $\mathrm{A}=20.138$ and $\bar{A}=20.125$.
(ii) Show that the Shift operator is given as $\mathrm{E}=1+\Delta$

QUESTION 4

(a). If $\mathrm{y}=\mathrm{a}(3)^{\mathrm{x}}+\mathrm{b}(-2)^{\mathrm{x}}$ and $\mathrm{h}=1$, prove that $\left(\Delta^{2}+\Delta-6\right) \mathrm{y}=0$
(b). Using the Trapezoidal rule, find from the table below, the area bounded by the curve and the x -axis from $\mathrm{x}=7.47$ to $\mathrm{x}=7.52$

\boldsymbol{x}	$\boldsymbol{f (x)}$
7.47	1.93
7.48	1.95
7.49	1.98
7.50	2.01
7.51	2.03
7.52	2.06

QUESTION 5

(a). Find the missing y_{x} values from the first differences provided:
(11 marks)

y_{x}	0	-	-	-	-	-
$\Delta \mathrm{y}_{\mathrm{x}}$	0	1	2	4	7	11

(b). Consider the first order differential equation $\frac{d y}{d x}=f(x, y)$ with initial boundary conditions $y\left(x_{0}\right)=y_{0}$, differentiate between initial value problems andboundary value problems.

