

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE: P	HY 314
COURSE TITLE: N	UMERICAL COMPUTATIONS
CREDIT UNIT: 2	
TIME ALLOWED: (2	HRS)

INSTRUCTION: Answer question 1 and any other three questions

QUESTION 1

(a) Differentiate between exact numbers and approximate numbers. (4 marks) (b). List three effective rules that are used to recognize and handling significant digits (3 marks) (c). An approximate value of π is given by $x_1 = 22/7 = 3.1428571$ and its true value is x = 3.1415926. Find (i) the absolute error and (ii) the relative error (4 marks) (d). Assume a given table of values (x_i, y_i) , i = 0, 1, 2..... n for a given function y = f(x), briefly discuss the three types of finite differences known and state their individual first difference operator. (6 marks) (e). Mention four methods of solving a first order ordinary differential equation. (4 marks) (f). List four types of operator that are usually employed in C++ programming(4 marks)

QUESTION 2

(a). Define arithmetic precision	(2 marks)
(b) (i) List four types of errors encountered in numerical computations	(4 marks)
(ii) Discuss any three of them	(9 marks)

QUESTION 3

(a). Find the difference $\sqrt{6.37} - \sqrt{6.36}$ to three significant figures	(3 marks).	
(b).What is interpolation?	(2 marks)	
(c). (i) Find the absolute and relative errors when the exact answer and the	e computed answer in	
an experiment are respectively A = 20.138 and \overline{A} = 20.125.	(4 marks)	
(ii) Show that the Shift operator is given as $E = 1 + \Delta$	(6 marks).	

QUESTION 4

(a). If $y = a(3)^{x} + b(-2)^{x}$ and h = 1, prove that $(\Delta^{2} + \Delta - 6)y = 0$ (10 marks) (b). Using the Trapezoidal rule, find from the table below, the area bounded by the curve and the x-axis from x = 7.47 to x = 7.52 (5 marks)

x	f(x)
7.47	1.93
7.48	1.95
7.49	1.98
7.50	2.01
7.51	2.03
7.52	2.06

QUESTION 5

 Δy_x

0

(a). Find the missing y_x values from the first differences provided:							(11 marks)
	y _x	0	-	-	-	-	-

4

7

11

(b). Consider the first order differential equation $\frac{dy}{dx} = f(x, y)$ with initial boundary

2

1

conditions $y(x_0) = y_0$, differentiate between initial value problems and boundary value problems. (4 marks)