

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS...

COURSE CODE: PHY 407

COURSE TITLE: SOLID STATE PHYSICS II

CREDIT UNIT: 3

TIME ALLOWED: $(2\frac{1}{2})$ HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

a. b.	Briefly explain what you understand by the word dielectric. State four (4) properties of the local electric field.	(2 marks) (8 marks)	
c	Derive the expression for Weiss field constant from Curie-Weiss law.	(8 marks)	
d	Write an expression to explainCurie-Weiss law.	(4 marks)	
QUESTION 2			
a.	Write the expression for:		
	(i)Electric susceptibility	(3 marks)	
	(ii) Polarisation of a crystal.	(3 marks)	
b.	Hence or otherwise, obtain Clausius-mossotti equation.	(6 marks)	

QUESTION 3

Write on any six (6) properties of a dielectric material.

(12 marks)

QUESTION 4

From the definition of magnetic susceptibility per unit volume, show that the Langevin expression for Diamagnetic material is

$$\psi = \frac{\mathbb{Z}e^2N}{6mc^2}$$

(12 marks)

QUESTION 5

a	Differentiate between dipole relaxation and dielectric losses.	(6 marks)
b	Differentiate between ferromagnetic and antiferromagnetic materials	(6 marks)

QUESTION 6

Discuss the major categories of crystalline defects. (12 marks)