NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2020_2 EXAMINATIONS

COURSE CODE:PHY 456COURSE TITLE:NUCLEAR REACTOR PHYSICSCREDIT UNIT:3TIME ALLOWED:(2½ HRS)

INSTRUCTION:

Answer question 1 and any other four questions

QUESTION 1

(a) Define nuclear cross section	(2 marks)
(b)Define atom density and give its mathematical representation	(3 marks)
(c)A block of aluminium has a density of 2.699 g/cm^3 . If the gram atomic weight of aluminium	
is 26.9815 g, calculate the atom density of the aluminium	(3 marks).
(d)Define mean free path for a neutron and State the relationship between the mean free path λ of	
neutron and the macroscopic cross section	(4 marks)
(e)Define average log energy decrement	(3 marks)
(f)Define Slowing down power	(2 marks)
(g) Mention three parameters that determine the effectiveness of a neutron moderating material	
	(3 marks).
(h) Define a nuclear reactor	(2 marks).
QUESTION 2	
(a) List six ways by which neutrons may interact with nuclei.	(6 marks)
(b) Briefly discuss any two.	(6 marks)
QUESTION 3	
(a)(i)Mention two ways through which to sustain chair reaction.(ii)What are the factors that govern the probability of a neutron interacting with a	(2 marks)
nucleus for a particular reaction?	(4 marks)

(b). Write a short note on thermalization and give two examples of good moderators (6 marks).

QUESTION 4

(a) (i) Mention two ways by which a neutron interact with an atom of the material it enters.

(2 marks)

(ii) Write short note on the microscopic cross section of a nucleus for a particular reaction

(5 marks)

(b). Calculate the energy liberated when a helium nucleus is formed by the fusion of two deuterium nuclei. (mass of $_1\text{H}^2$ is 2.01478u, mass of $_2\text{He}^4$ is 4.00388u. 1u = 931 MeV) (5 marks).

QUESTION 5

(a). Differentiate between macroscopic and microscopic cross sections. State the relationship between them (5 marks)
(b). How many collisions are required to slow a neutron from an energy of 2 MeV to a thermal energy of 0.025 eV, using water as the moderator? Average logarithmic energy decrement of water is 0.948. (4 marks)
(c). Calculate how far a neutron will go through a scattering material like water (H₂O) in the thermal energy range before it is absorbed. (Thermal diffusion length of water = 2.85 cm)

(3 marks)

QUESTION 6

Briefly discuss the two frames of reference that are usually common in the study of the dynamics of neutrons. (12 marks)