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NATIONAL OPEN UNIVERSITY OF NIGERIA
14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS
SCHOOL OF SCIENCE AND TECHNOLOGY
JUNE/JULY EXAMINATION

COURSE CODE: MTH 411                                                                                
[bookmark: _GoBack]COURSE TITLE: MEASURE AND INTEGRATION    (3units)
TIME ALLOWED:3 HOURS
INSTRUCTION: COMPLETE ANSWERS TO ANY FIVE (5) QUESTIONS BEAR FULL MARKS
	



1(a)	If  E1, E2,  E3 . . . ,  En are pairwise disjoint measurable subsets of R’, show that                 μ*( X ) =  for every subset X of R’ 7marks



1(b)	Show that the function ,is translation invariant i.e for every R’  and  E R’ we have μ*{ Tr(E)} = μ*(E); where the translation function  Tr is defined by Tr(x) = x + r for every x ε R’.     7marks




2(a)	Show that a subset E of R’ is Lebesque measurable if and only if every subset X of R’ we have  =  + 9marks

2(b)	Prove that if a subset E of R’ is measurable, then so is its complement         5marks


3(a)	Explain carefully what is meant by the LebesqueOuter Measure μ*(E) of a subset E of the real line R		    5marks


3(b)	Prove that for any two subsets A and B of R, if A B, then μ*(A) ≤ μ* (B) 9marks


4(a)	Prove that if two subsets A and B of the real line are measurable, then so is A
7mark 


4(b)	Prove that for every countable family


	of subsets of R, we have μ* ≤ 7marks




5(a)	Find the length of the set 7marks

5(b)	Prove that if E is any countable set of real numbers, the = 0             7marks


6(a)	Define a set with measure Zero.					7marks

6(b)	Suppose f = g almost everywhere. Show that 


	 =  		7marks


7(a)	Let   E1, E2,  E3 . . . ,  En be disjoint  measurable subset of E with  μ(E)<, then

Every linear combination S = with real coefficient a1,  a2,  a3, .  .  .  am is

measurable simple function and IE(s) = .7marks




7(b)	Prove that a monotonic increasing sequence of measurable sets in R’satisfies the relation  =		7marks
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