NATIONAL OPEN UNIVERSITY OF NIGERIA
UNIVERSITY VILLAGE, 91 CADASTRAL ZONE, NNAMDI AZIKWE EXPRESSWAY, JABI, ABUJA FACULTY OF SCIENCES DEPARTMENT OF COMPUTER SCIENCE 2021_1 EXAMINATION

COURSE CODE: CIT 371
COURSE TITLE: COMPUTER GRAPHICS AND ANIMATION
CREDIT: 3 UNITS
TIME ALLOWED: $\mathbf{2}^{1 / 2}$ HOURS
INSTRUCTION: ANSWER QUESTION ONE (1) AND ANY OTHER FOUR (4) QUESTIONS QUESTIONS

Question One (22 marks)

1a) Give a detailed analysis of the raster image representation. (4mks)
1b. Summarize the meaning of Computer graphics. (2mks)
1c. briefly distinguish between modelling and animation. ($2 \mathbf{m k s}$)
1d. Outline the three animation techniques and their areas of application. (9mks)
1e. Itemize the three common forms of culling. (3mks)
1f. Analyse the back-face culling. (2mks)
[Total = 22 marks]

Question Two (12marks)

2a. Itemize the four things we need to work with in Computer graphics. (4mks)
2 b . Outline any four varieties of raster hardcopy devices. ($\mathbf{5 m k s}$)
2c. In a cathode ray tube, state the two factors on which the Critical Fusion Frequency depend.

(2mks)

2d. Briefly distinguish between quadtrees and octrees. (1mk)

Question Three (12marks)

3a. Briefly describe the BSP tree. (4mks)
3b. Itemize the two things needed to construct a BSP tree. (4mks)
3c. Given a color spectrum, how do you find the corresponding X, Y, Z quantities. (4mks)

Question Four(12marks)

4a. Briefly describe the spectroradiometer. (3mks)
4 b . What are complimentary colors? (1mk)
4c. In a tabular form, Outline the eight colors and their associated axes in the RGB color cube. (8mks)

Question Five (12marks)

5a. Show that w.w $=1 \mathrm{wl}{ }^{2}(\mathbf{3 m k s})$
$5 b$. Find the sum of the two vectors $a+b$ if
$\mathrm{a}=[\mathrm{u}, \mathrm{v}]^{\mathrm{T}}$ and $\mathrm{b}=[\mathrm{s}, \mathrm{t}]^{\mathrm{T}} .(\mathbf{5 m k s})$
$5 c$. When is a curve G^{I} continues? ($\mathbf{4 m k s}$)

Question Six (12marks)

6a. Explain why light rays bend? (2 mks)
6 b . Write briefly the concept of texture within the context of geometric modelling. (2mks)
6c. In geometrical modelling, discuss in detail backward mapping. (8mks)

