

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES November, 2018 Examinations

Course Code:		MTH307	
Course Title:		Numerical Analysis	
Credit Unit:		3	
Time Allowed:		3 Hours	
Total:		70 Marks	
Instruction:		Answer Question One and Any Other 4 Questions	
r3	1	1	

1.	Evaluate J _C	$\frac{1+x^5}{1+x^5}ux$	with step-leng	$\frac{1}{2}$	lecimal places using
	١.	Irapezoida	al rule		11 marks
	ii.	Simpson's	$\frac{1}{3}$ -rule.		11 marks

2 a. Write out the orthogonality relation and the symmetric property of the Chebyshev polynomial.

7marks

b. Show that
$$2(T_n(x))^2 = T_{2n}(x) + 1$$
; where $T_n(x)$ is Chebyshev polynomial. **5marks**

3. Solve the BVP $(1 + x^2)y'' + 2xy - y = x^2$; y (0) = 1 and y (1) = 0 using a step length of 0.25

12 marks

4. Use Hermite cubic interpretation to estimate the value of $\sqrt{55}$ taking

$$f(x) = \sqrt{x}, \ x_1 = 4, \ x_2 = 16$$
 12 marks

5. Use the least squares to fit a parabola to the data given below correct to 2 decimal places

х	1	2	3	4	5	6
У	120	90	60	70	35	11

12marks

6. a. State two (2) properties of spline function S(x) of degree k with n nodes, $x_1 < x_2 < \cdots < x_n$

2marks

b. Distinguish between IVP and BVP and illustrate with one example each **4marks**

c. Enumerate and explain the three (3) types of boundary conditions for partial differential equations **6 marks**